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Statistical network models have become popular tools for analyzing multivariate psycholog-

ical data. In empirical practice, network parameters are often interpreted as reflecting causal 

relationships – an approach that can be characterized as a form of causal discovery. Recent 

research has shown that undirected network models are likely to perform poorly as causal 

discovery tools in the context of discovering acyclic causal structures, a task for which many 

alternative methods are available. However, acyclic causal models are likely unsuitable for 

many psychological phenomena, such as psychopathologies, which are often characterized 

by cycles or feedback loop relationships between symptoms. A number of cyclic causal dis-

covery methods have been developed, largely in the computer science literature, but they are 

not as well studied or widely applied in empirical practice. In this paper, we provide an acces-

sible introduction to the basics of cyclic causal discovery for empirical researchers. We exam-

ine three different cyclic causal discovery methods and investigate their performance in typ-

ical psychological research contexts by means of a simulation study. We also demonstrate 

the practical applicability of these methods using an empirical example and conclude the 

paper with a discussion of how the insights we gain from cyclic causal discovery relate to 

statistical network analysis. 
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1. INTRODUCTION 

A fundamental task in various disciplines of sci-

ence is to understand the mechanisms or 

causal relations underlying the phenomena of 

interest. In psychology, one of the core ques-

tions is how psychopathology comes about, 

with the network theory positing that mental 

disorder is produced by a system of direct 

causal interactions between symptoms (Bors-

boom & Cramer, 2013). Given this theoretical 

framework, statistical network models have 

become popular tools for analyzing multivari-

ate observational data (Robinaugh et al., 2020; 

Epskamp et al., 2018a). In practice, empirical re-

searchers often interpret the conditional statis-

tical relationships estimated in a network 

model as reflecting the causal relationships be-

tween symptoms of mental disorder and/or 

other psychological variables — an approach 

that can be characterized as a form of causal 

discovery (Spirtes et al., 2000; Peters et al., 2017; 

Ryan et al., 2022). However, it has been shown 

that network models are likely to perform 

poorly as causal discovery tools; relations in the 

network may not reflect the direct causal ef-

fects that researchers aim to discover, as they 

may be produced by, amongst other inferential 

issues, unwittingly conditioning on common 

effects (Dablander & Hinne, 2019; Ryan et al., 

2022). 

In the field of causal discovery, one class of 

methods that utilizes patterns of statistical 

(in)dependence estimated from observational 

data to infer causal structures is known as con-
straint-based causal discovery (Spirtes & 

Glymour, 1991). Ryan et al. (2022) suggest that 

network models could be replaced by purpose-

built constraint-based causal discovery meth-

ods. However, the most popular and well-stud-

ied constraint-based methods assume that 

causal relationships are acyclic; that is if X 

causes Y, then Y does not cause X (Glymour et 

al., 2019). Although so-called Directed Acyclic 

Graphs (DAGs) (Pearl, 2009) are popular tools 

for causal modeling (Tennant et al., 2021), the 

acyclicity assumption is problematic when 

studying a phenomena such as mental disor-

ders, since cyclic relationships or feedback 
loops are critical to the theoretical understand-

ing of psychopathology (Borsboom, 2017; Has-

lbeck et al., 2021). For example, Wittenborn et al. 

(2016) suggest that several different causal 

feedback loops, such as perceived stress → neg-
ative affect → rumination → perceived stress 
play a key role in sustaining depression. Such 

theoretical expectations necessitate the use of 

cyclic causal discovery methods. 

Although some constraint-based cyclic causal 

discovery algorithms have been developed 

(Mooij & Claassen, 2020; Richardson, 1996a; 

Strobl, 2019), they have not been as well studied 

as their acyclic counterparts. In part, this is due 

to the conceptual and practical difficulties in fit-

ting and interpreting cyclic causal models. Con-

ceptually, a number of researchers in the causal 

modeling literature have shown that, under 

certain conditions, cyclic causal models fit to 

cross-sectional data may be interpreted as re-

flecting causal relations between equilibriums 
or resting states of a dynamic system (Iwasaki & 

Simon, 1994; Dash, 2005; Strotz & Wold, 1960; 

Spirtes, 1995; Mooij et al., 2013; Weinberger, 2021; 

Bongers et al., 2022). From this perspective, cy-

clic causal relations should be interpreted as a 

kind of coarse-grained or time-averaged repre-

sentation of (reciprocal) causal relations be-

tween processes that evolve over time; for a de-

tailed treatment of cyclic equilibrium causal 

models in the context of psychological model-

ing, we refer readers to Ryan and Dablander 

(2022). On the practical side, in the context of 

structural equation modeling, it is well known 

that all acylic path-models (i.e. containing inde-

pendent error terms and no latent variables) 

are statistically identified, whereas this is not 

generally the case for path models which con-

tain cycles (Bongers et al., 2021; Bollen, 1989). 

Furthermore, interpreting the output of cyclic 

causal discovery algorithms is significantly 

more challenging than for their acyclic coun-

terparts: Even in ideal scenarios, the same pat-

tern of statistical dependence that can be used 
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to deduce a direct causal link in a DAG may not 

reflect a direct causal link in a cyclic graph 

(Bongers et al., 2018; Hyttinen et al., 2013). Re-

cent work has explored the application of in-
variance-based algorithms — another type of 

causal discovery methods capable of estimat-

ing cycles — to psychological data (Kossakow-

ski et al., 2021). However, these methods require 

multiple datasets that measure the same vari-

ables but in different settings, such as a mix of 

observational and experimental data, which is 

a disadvantage compared to constraint-based 

methods that can be applied using only a sin-

gle observational dataset (Peters et al., 2016; 

Glymour et al., 2019). 

To our knowledge, little research has been 

done on the applicability of constraint-based 

cyclic causal discovery methods in psychology, 

and much remains unknown about their per-

formance. Therefore, in this paper, we aim to 

address the following question: How well do 

constraint-based cyclic causal discovery meth-

ods perform in typical psychological research 

contexts? First, we will provide an accessible 

overview of the different cyclic causal discovery 

methods, including the assumptions under 

which they are expected to work and how the 

output of these methods should be inter-

preted. Second, we investigate, by means of a 

simulation study, how well these different 

methods perform under various circum-

stances. In the simulation study, we study more 

and less ideal situations, by varying the sample 

size, the size and density of the underlying net-

work, and the presence or absence of unob-

served confounding variables. Third, we 

demonstrate the practical applicability of these 

methods by applying them to empirical data 

(McNally et al., 2017) and discussing how the in-

sights we gain relate to the statistical network 

analysis of the same data. 

2. BACKGROUND 

In this section, we will establish the basic con-

cepts of graphical models and examine how 

constraint-based causal discovery methods 

operate. We will first introduce different types 

of graphical models, while demonstrating the 

differences between statistical and causal 

graphical models using example graphs. Then, 

we will explain the assumptions that underlie 

constraint-based causal discovery methods, as 

well as the technical difficulties that arise in the 

presence of cycles. Lastly, we will illustrate each 

step of the constraint-based causal discovery 

procedure using a simple example of a directed 

graph. 

2.1 Graphical Models 

 A graph is a pair G = (V, E), where V is a set of 

vertices and E is a set of edges, describing the 

connections between the vertices. A probabilis-

tic graphical model uses a graph to express the 

conditional (in)dependencies between random 

variables, where the vertices represent random 

variables, and the edges encode the condi-

tional dependencies that hold among the set of 

variables (Lauritzen, 1996). 

There exist various graphical models that differ 

in the types of edges they allow (e.g., directed 

vs. undirected) and how edges are interpreted 

in terms of statistical relationships. One com-

monly known graphical model in psychology is 

the Pairwise Markov Random Field (PMRF) — 

an undirected graph where edges indicate a 

statistical association between variables after 

controlling for all other variables — which forms 

the basis of statistical network models such as 

the Gaussian Graphical Model (GGM) (Epskamp 

et al., 2018b; Epskamp & Fried, 2018). In PMRFs, 

edges are strictly undirected, and the presence 

of an edge A − B indicates that A and B are sta-

tistically dependent, conditional on the set of all 

other variables in the network (Borsboom et al., 

2021). Models like the GGM and Ising network 

model can be seen as parameterizations of the 

PMRF. These models assume particular distri-

butions for the variables involved, and, in the 

case of the GGM, assume that conditional 

(in)dependence relations can be captured by 

linear dependence parameters such as the par-

tial correlation. 
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In a causal graphical model, on the other hand, 

the edges describe causal relationships be-

tween variables; the edges are typically di-

rected, with A → B denoting that intervening on 

A results in a change in the probability distribu-

tion of B (Geiger & Pearl, 1990). The simplest 

and most commonly used causal graph is a di-
rected acyclic graph (DAG), which is commonly 

utilized to represent a Bayesian network. A 

DAG consists of directed edges without any cy-

cles (Pearl, 1988). When a causal graph contains 

cycles, it is referred to as a directed cyclic graph 
(DCG). Two examples of causal graphical mod-

els are shown in Figure 1. Figure 1(a) does not 

contain any cycles, whereas Figure 1(b) does; 

hence they are called a DAG and DCG, respec-

tively. In Figure 1(b), the cycleX2 ⇄ X3 denotes 

that X2 is a direct cause of X3 and X3 is a direct 

cause of X2.  

Causal graphical models also describe patterns 

of statistical independencies, which can be 

read off from structure of the graph using 

Pearl’s d-separation criterion (Geiger et al., 

1990). The idea of this criterion is to associate 

dependence with connectedness (i.e., the path 

between A and B is activated by C; d-con-
nected by C) and independence with 

separation (i.e., the path between A and B is 

blocked by C, and so these variables are d-sep-
arated by C; for a detailed formal treatment of 

d-separation, see Tian et al., 1998). Formally, two 

variables A and B are said to be d-separated 

given C if and only if all paths between A and B 
are blocked when conditioning on C (Pearl, 

2009). Different types of directed paths in a 

graph are either blocked or unblocked by con-

ditioning on variables along them. For instance, 

in Figure 1(a), we see a chain structure X1 → X2→ 

X3, which implies that X1 and X3 are marginally 

dependent (X1 ⊥/⊥ X3) but independent condi-

tional on X2 (X1 ⊥⊥  X3 | X2). More formally, we would 

say X1 and X3 are d-connected given the empty 

set but d-separated by X2. A fork structure X3←X2 

→X4 implies the same pattern of independen-

cies; X3 and X4 are marginally dependent (X3 

⊥/⊥X4) but independent conditional on X2 (X3 ⊥⊥   X4 

| X2). However, a collider structure X2→X4←X5 im-

plies a contrasting pattern; here X2 and X5 are 

marginally independent (i.e., d-separated when 

conditioning on the empty set, X2 ⊥⊥  X5) but de-

pendent conditional on X4 (X2 ⊥/⊥X5 | X4). This dis-

tinguishing characteristic of colliders is crucial 

when identifying the directions of causal rela-

tionships, as will be shown in Section 2.3. In 

principle, the d-separation criterion can be ap-

plied to both acyclic and cyclic causal graphs, 

as long as certain conditions, discussed in Sec-

tion 2.2, are met.  

Having established the basics, we can now ex-

amine how PMRF-based statistical network 

models relate to different types of directed 

causal models. In Figure 1(c), we show the 

PMRF model that corresponds to the DAG in 

Figure 1(a), where an additional edge is intro-

duced between X2 − X5 due to conditioning on 

the common effect (i.e., collider), X4. In Figure 

1(d), the PMRF model corresponding to the 

DCG in Figure 1(b) is shown. Two spurious edges 

are induced in the PMRF network (e.g., X1 − X3 

and X2 − X4) because of conditioning on the col-

liders X2 and X3. These examples illustrate the 

limitations of statistical network models in in-

ferring patterns of directed causal 

Note. (a) is the example directed acyclic 
graph (DAG). (b) is the example directed cy-
clic graph (DCG). (c) is the PMRF (Pairwise 
Markov Random Field) corresponding to the 
DAG in (a). (d) is the PMRF corresponding to 
the DCG in (b). 
 

  

  

  

  

      

  

  

  

  

  

  

  

  

  

   

  

   

  

  

  

  

Figure 1. Example causal graphical models 
and corresponding PMRF models. 
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relationships. PMRFs can contain spurious 

edges resulting from conditioning on common 

effects, and the possibility of producing collider 

structures is likely to be higher with the pres-

ence of cycles, exacerbating this issue. Notably, 

while the mapping from a causal graph to the 

statistical network we show here is unique, the 

two statistical networks presented may have 

been generated by various distinct causal 

graphs, including those with or without cycles. 

For more details on the relationship between 

PMRF-based networks and causal graphs, we 

refer readers to Ryan et al. (2022). 

Despite this limitation, in practice, PMRFs have 

often been interpreted as a causal skeleton — 

the undirected version of a causal graph (Has-

lbeck & Waldorp, 2018). Further elaborating on 

this, Ryan et al. (2022) demonstrated how 

PMRF-based network models can, in fact, be 

used to identify a so-called equivalence class of 

causal graphs under certain assumptions. 

However, these models are prone to subopti-

mal performance, as the equivalence class they 

identify is likely much larger than that of cus-

tom-built causal discovery methods. Conse-

quently, the authors suggest that causal dis-

covery methods specifically designed for this 

task are likely to outperform statistical network 

models in learning the underlying causal struc-

ture, indicating that network models may not 

be desirable tools for discovering causal rela-

tionships. In the following sections, we will fo-

cus on how constraint-based causal discovery 

methods recover the causal structure while 

looking into the assumptions they require. Ad-

ditionally, we will explore the practical and con-

ceptual difficulties involved in performing 

causal discovery in the presence of causal cy-

cles. 

2.2 Acyclic vs. Cyclic Causal Graphs 

The d-separation criterion described above ap-

plies to all acyclic graphs, but for graphs with 

cycles, it applies only under certain conditions. 

To understand these conditions, we first need 

to introduce some graph terminology. In the 

field of graphical models, we use kinship termi-

nology to describe a graph structure, as follows: 

 

Also, when there exists an edge between two 

vertices A − B, A and B are said to be adjacent. 

For example, in Figure 1(b), X1 ∈ paG(X2), X2 ∈ 

chG(X1), {X1, X2, X3, X4} ∈ anG(X3), {X1, X2, X3} ∈ deG(X1), 

and X2 is adjacent to X1 and X3. With this termi-

nology in place, we can define the conditions 

that relate patterns of causal dependency in a 

causal graph to patterns of statistical depend-

ency between random variables. First, we intro-

duce the global Markov condition, which states 

that d-separation relations represented in 

causal graphs can be used to read off statistical 

independence relations such that: 

if XA ⊥⊥  G XB | XC ⇒ XA ⊥⊥   XB | XC for all disjoint sub-

sets of XA, XB, XC, 

where ⊥⊥  G refers to d-separation in graphs, and ⊥⊥ 

refers to statistical independence between ran-

dom variables. If causal graphs are acyclic, such 

as DAGs, then the global Markov condition 

holds regardless of the functional forms of 

causal relations and the distributions of varia-

bles involved (Lauritzen, 1996). In addition, in 

DAGs, the global Markov condition entails the 

local Markov condition, which states that a var-

iable is independent of its non-descendants 

given its parents (Lauritzen, 2001). The fact that 

one Markov property implies the other comes 

in handy when reading off conditional inde-

pendencies from a graph. 

In contrast to the acyclic case, the situation is 

not as straightforward in cyclic graphs. In DCGs, 

the global Markov property does not always 

hold. Spirtes (1994) showed that this property 

does hold when causal relations are linear and 

the error terms are independent. However, 

even in this case, the global Markov property 

does not imply the local Markov property. For 

example, in Figure 1(b), the global Markov 
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property is preserved (X1 ⊥⊥  G X4 | {X2, X3} ⇒ X1 ⊥⊥   X4 

| {X2, X3}), but the local Markov property is vio-

lated as X2 ⊥/⊥G X4 | X3 (i.e., X2 is not independent 

of its non-descendant X4 given its parent X3). 

This is because X3 serves as both a parent of X2 

and a collider on the path X2 → X3 ← X4 at the 

same time. In the current paper, we limit the 

scope of our study to cyclic causal graphs that 

represent linear causal relations with jointly in-
dependent error terms, so for which the global 

Markov condition is satisfied. This type of as-

sumption is common in many statistical mod-

eling traditions in psychology and social sci-

ences. For example, structural equation mod-

els and popular statistical network models, 

such as the GGM, also rely on similar assump-

tions about the linearity of statistical relations 

(Epskamp et al., 2018b; Bollen & Long, 1993). 

In addition to the above, constraint-based 

causal discovery methods typically make use of 

two additional assumptions (Pearl, 2009; 

Spirtes et al., 2000). The first is known as faith-
fulness, which is essentially the reverse of the 

global Markov condition, stating that statistical 

independencies map onto the structure of 

causal graphs such that: 

XA ⊥⊥   XB | XC ⇒ XA ⊥⊥  G XB | XC. 

In other words, it postulates that if two varia-

bles are (conditionally) statistically independ-

ent of each other, then this implies that they 

are causally independent of each other, ruling 

out, for instance, that different paths in a causal 

system exactly cancel one another out.1 The 

second assumption, known as causal suffi-
ciency, relates to the absence of unobserved 
(i.e. latent) confounding variables — that is, any 

unobserved common causes of the variables 

within the causal graph. This assumption en-

sures that the statistical dependence between 

two variables can be explained by the patterns 

of causal dependence among the observed 

           
1 For a discussion of this assumption in the context of psychological network analysis, see Ryan et 
al. (2022). 

 

variables. Without this assumption, unobserved 

confounders can induce an edge between var-

iables when there is no direct causal relation 

between them (Lauritzen, 1996; Spirtes et al., 

2000). Crucially, not all causal discovery algo-

rithms require the assumption of causal suffi-

ciency; we will revisit a discussion of these 

methods in Section 3, but in the example below 

we assume sufficiency holds. 

2.3 A Primer on Constraint-Based Causal Dis-
covery 

Under the aforementioned assumptions, con-

straint-based methods seek to recover the un-

derlying causal structure by testing for condi-

tional independence relations between varia-

bles from observational data (Scheines et al., 

1998; Peters et al., 2017; Pearl, 1988). Assuming 

linear relations with additive Gaussian errors, 

conditional independence can be tested using 

partial correlations (Lawrance, 1976), although 

notably a number of non-parametric condi-

tional independence tests can also be used un-

der less stringent assumptions (Li & Fan, 2020; 

Huang et al., 2016). Constraint-based methods 

typically employ a two-step procedure; first, es-

tablishing the skeleton — an undirected version 

of the underlying graph — and second, at-

tempting to assign directions to the edges. In 

general, constraint-based techniques, much 

like any methods relying on observational da-

tasets, are unable to uniquely identify the un-

derlying causal graph, but instead return a set 

of causal graphs that imply the same statistical 

independence relations (Spirtes et al., 2000). 

To develop an intuition for how constraint-

based methods work, we will examine how 

they operate on data generated by a system for 

which the causal graph is represented by the 

relatively simple DAG shown in Figure 1(a). The 

method begins with a fully-connected graph, 

as shown in Figure 2(a). In the first step, the 

skeleton is estimated by testing for conditional 
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independence; if two variables are independ-

ent when conditioning on any subset of the re-

maining variables (e.g., X1 ⊥⊥   X3 | X2, X1 ⊥⊥   X4 | X2, X1 

⊥⊥   X3 | {X2, X4}, etc.), then the edge between those 

two variables is removed (see Figure 2(b)). This 

is based on the principle that, in acyclic graphs, 

two variables are always statistically depend-

ent (regardless of any conditioning set), if and 

only if a direct causal relation exists between 

them. In other words, we can identify the pres-

ence of direct causal paths between variables 

by testing whether they are statistically de-

pendent given any subset of the remaining 

variables. However, while this principle allows 

us to detect the presence of an edge, it does 

not tell us the direction of that edge (e.g., X2→X4 

or X2←X4). In the second step, we attempt to ori-

ent the edges in the skeleton by searching for 

colliders that induce distinctive patterns of in-

dependencies (e.g., X4 is identified as a collider 

since X2 ⊥⊥  X5 and X2 ⊥/⊥ X5 | X4, thus X2→X4←X5 is 

oriented; see Figure 2(c)). This procedure we 

have described is essentially the PC algorithm 

(Spirtes et al., 2000), and the output of the PC 

algorithm (Figure 2(c)) is called a complete par-
tially directed acyclic graph (CPDAG). Note that 

the resulting CPDAG is not identical to the orig-

inal true graph 𝐺, as the two edges between X1 

− X2 and X2 − X3 remain undirected. There are, in 

fact, three DAGs implied by the CPDAG, which 

are obtained by assigning directions to the un-

directed edges, excluding the combinations 

that introduce new colliders. These DAGs are 

called Markov equivalent, meaning that they 

encode the same conditional (in)dependencies 

(i.e., the same d-separation relations hold), and 

we call such a set of equivalent graphs a Markov 
equivalence class, denoted by Equiv(G) (Spirtes 

et al., 2000). These Markov equivalent DAGs are 

shown in the right-hand side of Figure 3, which 

summarizes the constraint-based causal dis-

covery procedure that we just described. This 

highlights a general difficulty in constraint-

based causal discovery that relies solely on ob-

servational data, namely that there are typically 

multiple graphs that are consistent with an ob-

served set of statistical independencies. Notice 

that the Markov equivalence class contains 

both the true graph shown in Figure 1(a) as well 

as two other distinct causal graphs; the algo-

rithm is correct, in that the true graph is cap-

tured in this equivalence class, however, we 

cannot distinguish it from the other, equally 

plausible, members of the equivalence class.  

Constraint-based methods for cyclic causal dis-

covery operate under similar principles as those 

described earlier. However, cyclic causal discov-

ery is in general more challenging, and the 

problem of having multiple graphs that are 

Markov equivalent is often exacerbated when 

cycles are allowed (Richardson & Spirtes, 1999). 

Consider how, in the DAG example above, we 

could identify the presence of direct causal 

Note. (a) shows the fully-connected graph for the example DAG from Figure 1(a), which is the 
initial starting point of the algorithm. (b) shows the estimated skeleton — an undirected graph 
of the underlying causal structure — after the first step. (c) shows the resulting graph after the 
second step, which represents the Markov equivalence class of DAGs (i.e., a set of DAGs that 
entail the same set of conditional independencies). 
1 

  

  

  

  

   

    

  

  

  

   

    

  

  

  

   

  

Figure 2. Steps of a constraint-based method. 
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relations between variables when they are sta-

tistically dependent given any subset of the re-

maining variables. Now suppose we apply the 

same rule to the DCG shown in Figure 1(b). In 

this cyclic graph, there is no direct causal path 

between X1 and X3, but instead there is the path 

X1 →X2 ⇆ X3. When testing for conditional inde-

pendencies, we find that X1 and X3 are not mar-

ginally independent because of the causal 

chain X1 → X2 → X3. However, unlike in the acyclic 

case, we also find that X1 and X3 are not condi-

tionally independent given X2, since X2 also acts 

as a collider on the path X1 → X2 ← X3. In cyclic 

graphs, two variables can be statistically de-

pendent conditional on every subset of the re-

maining variables, even when there is no direct 

causal relation between them. Therefore, when 

a cycle exists, a constraint-based method often 

cannot directly identify parental relations but 

recovers only up to ancestral relations, typically 

leading to a larger Markov equivalence class. 

This also means that the estimated skeleton of 

a cyclic graph represents ancestral relations, 

and is thus called the ancestral skeleton. Alt-

hough the same principles of causal discovery 

that we described for DAGs can be adapted and 

used for DCGs, some additional constraints and 

orientation rules are required to address the 

complexities arising from the presence of cy-

cles. In the next section, we will further elabo-

rate on these constraints and rules while intro-

ducing several constraint-based cyclic causal 

discovery algorithms. 

3. CAUSAL DISCOVERY ALGO-
RITHMS 

In the previous section, we introduced the key 

concepts of graphical models and the funda-

mental principles of constraint-based causal 

discovery methods. In the following section, 

Note. A constraint-based algorithm starts with performing a series of conditional independ-
ence tests on observational (i.i.d.: independent and identically distributed) data. Under the 
faithfulness and global Markov assumption, the algorithm estimates a graph structure based 
on the observed statistical independence patterns. The output is a partially directed graph (as 
some edges remain undirected). It can represent multiple graphs that are Markov equivalent, 
meaning that they imply the same statistical independence relations. This set of equivalent 
graphs is referred to as a Markov equivalence class, and in this example, it consists of three dif-
ferent DAGs. 
 

             

    

                  

                  

           

              

           

                  

            

 
             

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

       

          

      

  

  

  

  

  
             

            

            

            

Figure 3. Summary of the constraint-based causal discovery procedure. 
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using the key concepts of constraint-based 

causal discovery methods introduced above, 

we provide a detailed description of three dif-

ferent constraint-based algorithms for cyclic 

graphs: cyclic causal discovery (CCD) (Richard-

son, 1996b), fast causal inference (FCI) (Spirtes 

et al., 1995), and cyclic causal inference (CCI) 

(Strobl, 2019). We will discuss their assump-

tions, steps involved, and output graphs along 

with their interpretation. 

3.1 Assumptions of Algorithms 

All three algorithms build upon the same prin-

ciples and hence can be seen as extensions of 

the PC algorithm described in Section 2.3, but 

they entail slightly different assumptions. The 

CCD algorithm assumes causal sufficiency, de-

scribed in Section 2.2. The other two algo-

rithms, FCI and CCI, relax this sufficiency as-

sumption and account for the possibility of la-

tent confounders. In practice, this means that 

the output of these algorithms will often be 

more conservative than that of the CCD or PC 

algorithm, as statistical dependence between 

two variables, conditional on all other possible 

subsets of observed variables, may be induced 

by the presence of an unobserved confounder. 

However, similar to how the PC algorithm can 

use collider structures to determine the direc-

tion of causal relations, these algorithms can 

sometimes use particular patterns of multivari-

ate dependencies to identify that some statisti-

cal dependence relations must be induced by 

direct or ancestral causal relations; for more de-

tail on the general principles of causal discovery 

without sufficiency, we refer readers to Spirtes 

et al. (2000). That these algorithms do not rely 

on causal sufficiency makes them potentially 

more promising for psychological research, 

where the assumption of unobserved con-

founding is rarely warranted (Rohrer, 2018). 

Another closely related concept to sufficiency is 

selection bias. Selection bias occurs when one 

conditions on an unobserved collider, for exam-

ple, by selectively excluding a particular sub-

group of samples, which leads to a similar prob-

lem of inducing spurious causal relations (Ver-

steeg et al., 2022; Haslbeck et al., 2022). While 

the CCD algorithm assumes no selection bias, 

the FCI and CCI algorithms account for the pos-

sibility of selection bias. Although the FCI algo-

rithm was initially designed for acyclic causal 

structures (Spirtes et al., 1995), it has been 

shown to perform well in cyclic settings under 

a more generalized Markov condition, while rul-

ing out the presence of selection bias (Mooij & 

Claassen, 2020). Thus, we consider FCI as one of 

the cyclic causal discovery algorithms, but note 

that the suggested conditions by Mooij and 

Table 1. Assumptions of cyclic causal discovery algorithms. 

Note. aFCI was originally designed to infer causal structure in the presence of selec-
tion bias assuming acyclicity, but a recent study has proposed that it performs 
comparably well in the cyclic settings under certain conditions (Mooij & Claassen, 
2020). Specifically, these conditions require that selection bias is absent and varia-
bles share non-linear relations. 
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Claassen (2020) hold under limited situations 

excluding linear and discrete cases. Table 1 

summarizes the set of assumptions made by 

each of the algorithms, including the funda-

mental assumptions of global Markov condi-

tion, faithfulness, and acyclicity, as well as those 

related to the functional forms of causal rela-

tions and error terms. 

In Section 2.3, we learned that constraint-based 

causal discovery works by testing for patterns 

of conditional (in)dependence, resulting in an 

equivalence class of causal graphs that convey 

the same statistical (in)dependencies. The PC 

algorithm was used to illustrate this process, 

which involves two steps and yields a CPDAG 

as the output. For cyclic causal graphs, con-

straint-based algorithms follow a similar ap-

proach, but with some caveats. First, the spe-

cific steps taken are more complex than those 

of the PC algorithm. Second, the output of 

these algorithms is not a CPDAG, but a 

different representation of equivalent cyclic 

graphs known as a partial ancestral graph 
(PAG).  

3.2 CCD Algorithm 

The CCD algorithm is considered relatively sim-

ple among the three algorithms, as it assumes 

that there is no unobserved latent confounding 

(i.e., causal sufficiency). The basic operation of 

CCD is summarized in Figure 4. The fundamen-

tal principles on which the CCD algorithm op-

erates are similar to those of the PC algorithm, 

as illustrated in Figure 3. However, the output 

graph for CCD is a PAG, which represents the 

common features of equivalent directed cyclic 

graphs (DCGs). In what follows, we will explain 

how to interpret a PAG using the example PAG 

shown in Figure 4. 

3.2.1 CCD Output Representation: Partial 
Ancestral Graph (PAG) 

As was the case for DAGs, there typically exist 

multiple DCGs that imply the same statistical 

Note. Given the observed statistical independencies, CCD constructs a partial ancestral graph 
(PAG), which represents the ancestral features that are common to every directed cyclic graph 
(DCG) in a Markov equivalence class. In this particular example, the Markov equivalence class 
consists of two different DCGs.  

           

              

   
  

  

  

  

  

  

  

  

                  

             

             

        

         

  

    

  
       

            

            

                  

Figure 4. Summary of CCD algorithm operation. 
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independencies and so are statistically indistin-

guishable from one another. To represent a set 

of equivalent DCGs, the CCD algorithm uses a 

PAG that characterizes the common features 

shared by all equivalent DCGs, Equiv(G). As dis-

cussed in Section 2.3, the causal semantics of 

edges in PAGs become more complicated due 

to the presence of cyclic relations. In a CPDAG, 

an edge represents a direct causal relation be-

tween the corresponding vertices, while no 

edge implies its absence. In a PAG, the absence 

of an edge still indicates the absence of a direct 

causal relation, but the presence of an edge in-

dicates causal ancestry, with A→B meaning 

that A is an ancestor of B. In the causal graphs 

we have looked at so far, the types of edges are 

limited to directed (→) and undirected edges 

(—). In PAGs, however, three different types of 

edge-endpoints {○, >, −} are utilized to repre-

sent the ancestral relations in Equiv(G). The in-

terpretation of each edge-endpoint in a PAG is 

as follows:2 

1. A ∗→        B is interpreted as B is not an ancestor 
of A in every graph in Equiv(G). 

2. A ∗— B is interpreted as B is an ancestor of A 
in every graph in Equiv(G). 

3. A ∗⊸ B is interpreted as the ancestral rela-
tion of B with regard to A is undetermined 
or varies across graphs in Equiv(G).  

The PAG output of the CCD algorithm can also 

include a solid or dotted underlining to provide 

additional information about the causal rela-

tions in triplets. If there is a solid underlining 

A ∗—∗ B∗—∗C, it indicates that B is an ancestor of 

(at least one of) A or C in every graph in 

Equiv(G). If there is a dotted underlining added 

to a collider structure such as A→ B ←C, it indi-

cates that B is not a descendant of a common 

child of A and C in every graph in Equiv(G). For 

example, from the PAG shown in Figure 4, we 

           
2 In the description of the semantics for PAGs (Richardson, 1996b), is used as a meta-symbol, indi-
cating one of the three possible edge-endpoints. For instance, A—∗B indicates any of the following 
edges: A — B, A → B, or A ⊸ B. 

 

can read off the following:  

1. X2 and X3 are not ancestors of X1 and X4 in 

every graph in Equiv(G). 

2. X1 and X4 are both ancestors of X2 and X3 in 

every graph in Equiv(G). 

3. X2 is an ancestor of X3 and X3 is an ancestor 

of X2 in every graph in Equiv(G), indicating 

the presence of a cyclic relationship be-

tween them. 

4. X2 and X3 are not descendants of a com-

mon child of X1 and X4 in every graph in 

Equiv(G). This means that it is not possible 

for both X1 → X2 and X4 → X2, or both X1 → X3 

and X4 → X3 to coexist in any graph in 

Equiv(G). For instance, if X1 were to be a 

parent of X2, and considering that X2 and X3 

are ancestors/descendants of each other, 

X4 cannot also be a parent of X2; otherwise 

this condition would be violated. 

Given the causal ancestral relations repre-

sented by the example PAG described above, 

we can correspondingly derive the Markov-

equivalent DCGs, which are shown in the right-

hand side of Figure 4. 

3.2.2 Steps of CCD Algorithm 

In this section, we will provide a description of 

the CCD algorithm, which is the first theoreti-

cally well-founded constraint-based method 

that can be applied in a cyclic setting. The FCI 

and CCI algorithms share essentially the same 

structure, but differ in specific orientation rules 

in the latter part of the algorithm. As such, here 

we provide a high-level overview of the CCD al-

gorithm in so far as it shares features with the 

other two more complex algorithms. For this 

reason, we omit some of the more technical de-

tails for simplicity, and refer readers to Appen-

dix A in the Supplementary Online Materials 

https://osf.io/tjbq2/
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(SOM) for a more in-depth and comprehensive 

description of the CCD algorithm. 

The CCD algorithm consists of six steps. We il-

lustrate each step using the example DCG from 

Figure 5(a), which is the same example DCG 

that we previously introduced in Figure 1(b). 

The algorithm starts with a fully-connected 

PAG with circle endpoints, as shown in Figure 

5(b), which implies that the direction has not 

been determined yet. As it proceeds, (some) 

circles will be replaced by either an arrow head 

or a tail.  

Step 1. This step is identical to the first step of 

the PC algorithm described above in Section 

2.3; the algorithm tests whether two vertices, A 
and B, are statistically independent given any 

           
3 The resulting graph is referred to as an ancestral skeleton — an undirected graph of ancestral 
relations implied by the underlying structure. 

 

subset of the remaining variables. When such a 

subset is found, the algorithm removes A⧟B. 

Since X1 and X4 are marginally independent in 

our example DCG, X1 ⧟ X4 is removed, resulting 

in Figure 5(c).3 Step 2. Again, the algorithm pro-

ceeds in a similar manner to the PC algorithm 

by searching for collider structures in triplets 

A∗—∗B∗—∗C. Once the algorithm identifies B as 

a collider, the triplet is oriented as A → B ← C. 

Given that X2 and X3 are colliders in our exam-

ple, X1 ⧟ X2 ⧟ X4  and X1 ⧟ X3 ⧟ X4 are oriented 

respectively as X1 →X2 ←X4 and X1 →X3 ←X4, result-

ing in Figure 5(d).  

Step 3. The algorithm then checks for a differ-

ent pattern of d-separating relations in triplets 

to perform additional orientations. It seeks ad-

jacent variables A∗—∗B for which it can find a 

Note. (a) shows the true directed cyclic graph. (b) shows the fully-connected PAG, which is the 
starting point of the algorithm. (c) shows the ancestral skeleton (i.e., an undirected version of 
the PAG) estimated in step 1. (d) shows the state of the PAG after step 2, where some of the 
edges are oriented given the identified colliders. (e) shows the state of the PAG after step 4, 
where the Supsets are identified and the corresponding colliders are dotted-underlined. (f) 
shows the final state of the PAG after step 5, where an additional edge between X2 and X3 is 
oriented. 
 

    

  

    

  

    

  

    

  

    

    

    

  

    

  

   

  

    

  

    

  

  

  

    

  

Figure 5. Trace of CCD algorithm. 
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third variable, C, which a) is not directly con-

nected to either A or B, and b) is not d-sepa-

rated from B given A. In our example, no such 

structures can be found, since X1 and X4 are the 

only variables not adjacent at this point. Hence, 

no further orientations are performed in step 3. 

Step 4. In this step, the algorithm tries to refine 

the causal graph by introducing underlinings 

to collider structures. To do this, it searches for 

a Supset (super separation set), a set of varia-

bles that d-separate two endpoint vertices in a 

collider structure when conditioning on the 

collider. For each collider structure A→B←C, the 

algorithm examines the presence of any Sup-

sets, and if one is found, a dotted-underlining 
A→ B ←C is added. Since X2 and X3 are identified 

as a Supset in our example, they are dotted-un-

derlined as X1→ X2 ←X4 and X1→ X3 ←X4, resulting 

in Figure 5(e).4 

Step 5. The last two steps of CCD concern addi-

tional orientation of the remaining undirected 

edges by examining Supsets in the context of 

quadruplets ⟨A, B, C, D⟩. In this step, the algo-

rithm identifies quadruplets where B and D 
serve as colliders for A and C, while each being 

part of the Supsets in triplets involving A and C. 

When such structure exists, and B and D are 

connected, the algorithm orients that edge  

B ∗—∗ D as B ∗— D. In our example, a quadruplet 

matching this criteria is found, resulting in the 

orientation of X2 ⧟ X3 as X2 — X3, as depicted in 

Figure 5(f).5  

Step 6. In the final step, the algorithm searches 

for a different pattern in quadruplets where B 
remains a collider and is part of a Supset, but D 
is not adjacent to both A and C. If, in this case, 

A and D are d-connected given the Supset of 

⟨A, B, C⟩, the algorithm orients the edge B∗—∗D 

           
4 Recall that underlinings in PAGs can convey additional information on causal relations in triplets, 
as mentioned in Section 3.2.1. In this example, X1→ X2 ←X4 and X1→ X3 ←X4 together indicate that X2 
and X3 are not descendants of a common child of X1 and X4. 

 
5 This indicates that X2 and X3 are ancestors of each other, implying a cyclic causal relationship be-
tween them. 

 

as B→D. In our example, no such quadruplets 

exist, so no additional orientation occurs. This 

ultimately leads to Figure 5(f) as the final PAG. 

With the final PAG in hand, we can determine 

the Markov equivalence class of DCGs by read-

ing off all the ancestral relationships repre-

sented by the PAG, as discussed in Section 3.2.1. 

3.3 FCI Algorithm 

The FCI algorithm, originally proposed by 

Spirtes et al. (1995), is a constraint-based causal 

discovery method for directed acyclic graphs 

(DAGs), which takes into account the presence 

of latent confounding and possible selection 

bias. Recently, Mooij and Claassen (2020) 

demonstrated that the FCI algorithm can also 

be applied to cyclic causal discovery in the pres-

ence of latent confounding under more general 

faithfulness and Markov conditions, provided 

that the causal relationships are non-linear. For 

details on these conditions, we refer readers to 

Forré and Mooij (2017). 

3.3.1 FCI Output Representation: Partial An-
cestral Graph (PAG) 

The FCI algorithm, like the CCD algorithm, aims 

to identify the underlying causal graph up to its 

Markov equivalence class and also employs a 

PAG to represent the common ancestral fea-

tures among the equivalent graphs. However, 

allowing latent confounders adds a complica-

tion; DCGs are not closed under marginaliza-

tion over latent confounders, meaning that 

there exist infinitely many DCGs of observed 

variables (O) and latent confounders (L) that en-

tail the same set of independencies (Richard-

son & Spirtes, 2002). This problem arises from 

the fact that we do not know how many latent 

confounders are involved, and the algorithm 

has to account for the possibilities of arbitrarily 



14 advances.in/psychology 

 

 

Discovering cyclic causal models in psychological research                                        Park et al., 2024 

many latent confounders (Zhang & Spirtes, 

2005). 

To represent the presence of latent confound-

ers in the infinite space of causal graphs, we 

need to introduce a new type of edge into the 

PAG representation. Specifically, we take bidi-

rected edges (↔) to reflect the presence of la-

tent confounders, with A↔B denoting a con-

founding variable between A and B.6 The inter-

pretation of edges in the PAGs estimated by 

the FCI algorithm is otherwise the same as in 

the CCD algorithm, except for the fact that in 

FCI PAGs, fully-connected vertices with circle 

endpoints (⧟) may indicate a possible cyclic 

structure (Mooij & Claassen, 2020).  

3.3.2 Steps of FCI Algorithm 

We will walk through the steps of the FCI algo-

rithm given the same example DCG used for 

the CCD algorithm (Figure 1(b)). The algorithm 

consists of three main steps: skeleton discov-

ery, collider structure orientation, and applica-

tion of further orientation rules, where the first 

two steps are analogous to the CCD procedure. 

As with the CCD algorithm, the FCI algorithm 

begins with a fully-connected PAG with ⧟ 

edges between every pair of variables (Figure 

6(a)). Then, it estimates the ancestral skeleton 

(Figure 6(b)) by testing for statistical 

           
6 The class of graphs that make use of bidirected edges (↔) to represent latent confounding is 
called directed mixed graphs (DMGs), which can be seen as extensions of DCGs (Richardson, 
2003). 

 

independence (see step 1 of CCD). Subse-

quently, the FCI algorithm searches for colliders 

in the same way as the CCD algorithm (see step 

2 of CCD); when a collider (B) is identified,  

A∗—∗B∗—∗C is oriented as A∗→       B    ←∗                                                     C, resulting in 

Figure 6(c). Lastly, the FCI algorithm executes a 

set of orientation rules to further orient the 

edges. 

For a complete list of orientation rules (Zhang, 

2008), see Appendix B in the SOM. In this case, 

no additional endpoints are oriented in further 

steps, leaving Figure 6(c) as the final resulting 

PAG. Given this PAG, we can read off that: 

1. X2 and X3 are not ancestors of X1 and X4 in 

every graph in Equiv(G). 

2. X2 and X3 might be part of a cycle in G as 

they are fully-connected with circle end-

points. 

Notice that the PAG produced by FCI has more 

circle endpoints (○) than the PAG produced by 

CCD, which indicates a greater degree of uncer-

tainty about causal ancestral relationships. This 

is because the FCI algorithm accounts for the 

possibility of latent confounding, leading to a 

larger space of possible graphs. Consequently, 

there are many more equivalent graphs that 

Note. (a) shows the fully-connected PAG, which is the starting point of the algorithm. (b) 
shows the ancestral skeleton estimated in the same manner as the CCD algorithm. (c) shows 
the state of the PAG after the orientation step using the collider structures identified in step 2. 
 

    

  

    

  

    

  

    

    

    

  

    

Figure 6. Trace of FCI algorithm. 
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conform to the relational structure implied by 

the FCI PAG, resulting in a larger Markov equiv-

alence class, as illustrated in the right-hand 

side of Figure 7.  

3.4 CCI Algorithm 

The CCI algorithm combines features of both 

the CCD and FCI algorithms. It can identify cy-

clic causal structures, similar to CCD, and can 

handle latent confounding, similar to FCI 

(Strobl, 2019). Employing a combined ap-

proach, however, comes at a cost; the algo-

rithm requires more complex edge-endpoint 

inferences and lengthy orientation rules. For a 

detailed explanation of each step of the CCI al-

gorithm, see Appendix C in the SOM.  

3.4.1 CCI Output Representation: Partial An-
cestral Graph (PAG) 

As with the other two algorithms, CCI 

generates a PAG that captures the common 

ancestral relationships among equivalent 

graphs. To account for the presence of latent 

confounding in the infinite causal graph space, 

as described in Section 3.3.1, CCI also uses bidi-

rected edges (↔). Apart from that, the interpre-

tation of the other types of edges in PAGs esti-

mated by CCI is the same as that described in 

Section 3.2.1 for the CCD output. In the following 

section, we will briefly outline the steps of CCI 

with the same example DCG (from Figure 1(b)) 

that has been used throughout the paper and 

examine the interpretation of the resulting 

PAG.  

3.4.2 Steps of CCI Algorithm 

The CCI algorithm consists of seven steps in to-

tal, the first two of which are identical to those 

of the other algorithms (i.e., skeleton discovery 

Note. Given the observed statistical independencies, FCI constructs a partial ancestral graph 
(PAG) that captures the common ancestral features of every directed mixed graph (DMG) in a 
Markov equivalence class. The PAG estimated by FCI has more circle endpoints than the one 
estimated by CCD in Figure 4, indicating a higher level of uncertainty about the causal rela-
tionships. This is because FCI accounts for the presence of latent confounders, which is repre-
sented by bidirected edges ( ) in the graph. As a result, the Markov equivalence class tends to 
be relatively large. 

           

              

   
          

        

         

  

    

  

                  

             

  

  

  

  

  

  

  

  

  

  

  

  

   

       

            

            

                  

Figure 7. Summary of FCI algorithm operation. 
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and collider structure orientation), and the re-

maining steps are similar to the further orien-

tation rules implemented in CCD and FCI. 

Same as the others, CCI initiates with a PAG 

that is fully connected with ⧟ edges between 

every pair of variables (Figure 8(a)). After run-

ning the skeleton discovery procedure (i.e., 

step 1), the ancestral skeleton is estimated, as 

shown in Figure 8(b). Upon orienting the edges 

based on identified colliders (i.e., step 2), CCI 

produces the output shown in Figure 8(c). In 

the following orientation step (i.e., step 5), the 

edge between X2 and X3 is oriented utilizing 

Supsets — similar to step 4 of the CCD algo-

rithm — which results in Figure 8(d). Since no 

additional edges are oriented in the subse-

quent steps, Figure 8(d) remains the final PAG. 

From this PAG, we can read off the following:  

1. X2 and X3 are not ancestors of X1 and X4 in 

every graph in Equiv(G). 

2. X2 is an ancestor of X3 and X3 is an ancestor 

of X2 in every graph in Equiv(G), implying a 

cyclic relationship between them.  

Similar to FCI, the PAG obtained from CCI has 

more circle endpoints compared to the one ob-

tained from CCD, due to its consideration of la-

tent confounding. Figure 9 summarizes the op-

eration of CCI, which is similar to that of FCI 

shown in Figure 7, with a relatively large Mar-

kov equivalence class of graphs. However, 

unlike the PAG from FCI where cycles are im-

plied by the fully-connected edge with circle 

endpoints (⧟), the PAG from CCI clearly indi-

cates a cyclic relationship between X2 and X3 

with an undirected edge (—), which implies the 

reciprocal ancestral relationship between the 

two variables.  

3.5 Overview of Algorithms 

Thus far, we have introduced three constraint-

based causal discovery algorithms for cyclic 

graphs and discussed their characteristics. 

Based on our example (DCG from Figure 1(b)), 

the CCD algorithm may appear to be the pre-

ferred option, as it has less uncertainty in its 

output and correspondingly returns a smaller 

set of equivalent graphs. However, recall that 

the main advantage of the other two algo-

rithms — FCI and CCI — is their ability to handle 

the presence of latent confounding, which 

commonly occurs in psychological research in 

practice (Rohrer, 2018).  

The left-most panel of Figure 10 depicts the 

DCGs of two distinct data-generating pro-

cesses: In the first, the causal graph consists of 

four variables X1, . . . , X4, while in the second, the 

causal graph consists of a fifth variable L1, which 

we will consider to represent a latent con-

founder. Now consider what output we would 

expect each of the algorithms reviewed above 

to return if they were fit to data generated from 

Note. (a) depicts the fully-connected PAG, which is the starting point of the algorithm. (b) de-
picts the ancestral skeleton estimated in the same way as the CCD and FCI algorithms. (c) de-
picts the state of the PAG after orienting the collider structures in step 2. (d) depicts the state 
of the PAG after applying the extra orientation rules in step 5. No further orientation takes 
place in the subsequent steps, leaving (d) as the final PAG. 
 

Figure 8. Trace of CCI algorithm. 
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either of these data-generating systems: All 

three algorithms happen to generate the same 

PAG for these two different DCGs, shown in the 

remaining panels of Figure 10. Suppose the 

true underlying causal structure is the DCG 

without a latent confounder (top left in Figure 

10). In that case, all three PAGs correctly depict 

the ancestral features of the true DCG. How-

ever, the PAG output by CCD is by far the most 

precise, as it contains no circle endpoints, thus 

representing the smallest equivalent set of 

graphs. Now, suppose the underlying causal 

structure is the DCG with a latent confounder 

(bottom left in Figure 10). Then, the PAG gener-

ated by CCD contains errors (i.e., X1 is not an an-

cestor of X2 and X3), while the PAGs estimated 

by FCI and CCI correctly represent the ances-

tral features of the true DCG. In the following 

section, we will conduct a simulation study to 

compare the performance of each algorithm 

under various conditions and investigate 

which algorithm is most suitable for situations 

likely to arise in psychological research.  

4. SIMULATION 

In this section, we present a simulation study to 

evaluate the performance of the three causal 

discovery algorithms introduced above under 

different conditions: namely, the sample size, 

number of variables in the graph, density, and 

presence of latent confounders. We investigate 

how these factors affect each algorithm’s per-

formance and whether any algorithm outper-

forms the others in specific ways. In the follow-

ing, we will first discuss the data generation 

process, simulation design, and evaluation 

metrics, before presenting the results of the 

simulation study. 

4.1 Data Generation 

We simulate data from the different cyclic 

models, as shown in Figure 11, all of which are 

Note. CCI constructs a partial ancestral graph (PAG) based on the observed statistical inde-
pendencies, which captures the ancestral features common to every directed mixed graph 
(DMG) in a Markov equivalence class. Similar to the FCI algorithm, CCI accounts for the poten-
tial presence of latent confounding, which is represented by bidirected edges ( ), leading to 
more circle endpoints in the PAG. This generally results in a larger Markov equivalence class, 
as illustrated in the right-side of the figure. 

           

              

   
          

        

         

  

    

  

                  

             

  

  

  

  

  

  

  

  

   

  

  

  

  

       

            

            

                  

Figure 9. Summary of CCI algorithm operation. 
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characterized by linear relations and independ-
ent Gaussian error terms. These types of mod-

els are often used in psychological research, 

and for such cyclic models, the global Markov 

property — the necessary condition for con-

straint-based causal discovery — also holds, as 

discussed in Section 2.2.  

To generate data, we first define a coefficient 

matrix B. A non-zero entry Bij indicates an edge 

from Xj to Xi with a strength of Bij. Thus, X1, ..., Xp 
can be generated according to the following 

equation: 

𝑋𝑖 = ∑ 𝐵𝑖𝑟

𝑝

𝑟=1

𝑋𝑟 + ε𝑖 

for 𝑖 =  1, . . . , 𝑝, where 𝑝 is the number of vertices 

and ε are mutually independent 𝑁(0, 1) random 

variables. The variables X1, . . ., Xp then have a 

multivariate Gaussian distribution with a mean 

vector of zero and a covariance matrix 𝚺 = (I − 

B)−1(I − B)−T , where I denotes the identity matrix. 

Note that this data generation scheme is 

           
7 For more details on the specific B matrices used in the simulations, please refer to Appendix D in 
the SOM. 

 

possible provided that (I − B) is invertible, which 

is the case when the eigenvalues of  B are 

smaller than one in absolute value, | 𝜆 |  <  1 

(Eberhardt et al., 2010). While this is guaranteed 

if  B defines an acyclic model (Drton & Maathuis, 

2017), for cyclic models, this does not always 

hold. To satisfy this condition, cyclic relations 

need to be not too strong so that the dynamical 

system converges to equilibrium (Rothenhäu-

sler et al., 2015). We set fixed values for B to 

make the simulation results easier to track and 

interpret. When specifying the B matrices, we 

choose values within a range that is deemed 

reasonable (e.g., restricting the strength of cy-

clic relations to relatively small such that they 

do not diverge) and verify that the eigenvalues 

satisfy the equilibrium condition.7 When this 

condition is violated, we adjust the parameters 

until it is satisfied. In addition, to ensure that the 

simulation results are not dependent on the 

specific values of the coefficient matrix B, we 

perform a sensitivity analysis. In this analysis, 

we randomly sample parameter values of B 

from a uniform distribution on [− 0.9, − 0.1]  ∪

Note. Two different DCGs are displayed in the first column, with subsequent columns showing 
the corresponding PAGs estimated by each algorithm. In this particular case, all three algo-
rithms happen to produce identical PAG estimates for both DCGs. 
 

Figure 10. Comparison of the partial ancestral graphs (PAGs). 
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[0.1, 0.9] in each iteration. We then check 

whether the equilibrium condition is met, and 

if not, we re-sample the parameters until it is 

satisfied. In the following, we provide a detailed 

description of the simulation setup, which is 

replicated across both simulation studies.  

4.2 Simulation Setup 

We test each algorithm under different condi-

tions by varying the number of variables (rows 

in Figure 11) and the number of edges — the 

density (columns in Figure 11). We also explore 

the impact of unobserved confounding by in-

troducing latent variables (L1 and L2 in Figure 

11), as latent confounding is a common issue in 

psychological research, particularly when it 

comes to inferring causal relationships 

(Hallquist et al., 2021; Rohrer et al., 2022). Lastly, 

we vary the sample size ranging from small to 

moderately large, N ∈ {50, 150, 500, 1000, 2000, 

3000, 4000, 5000, 7500, 10000}, for every simu-

lated cyclic model. This leads to a 2 × 2 × 2 × 10 

design; number of variables × density × latent 

confounder (presence/absence) × sample size. 

We simulate each condition 500 times, esti-

mating three PAGs per iteration using each al-

gorithm. See Figure 11 for an overview of the dif-

ferent types of cyclic models used in the simu-

lation. These models precisely depict the ones 

utilized in the simulation.  

To test for conditional independence, we em-

ploy partial correlations since the variables in 

our simulated data have linear relations with 

additive Gaussian errors. In such cases, condi-

tional independence is equivalent to zero par-

tial correlation (Lawrance, 1976). Throughout 

the study, we use a fixed alpha level of 0.01 (𝛼 = 

0.01) for conducting the conditional independ-

ence tests, which is a commonly used value in 

causal discovery studies with moderate sample 

sizes (Malinsky & Danks, 2018). However, we 

acknowledge that following the fixed α conven-

tion is not straightforwardly justified (Strobl et 

al., 2017). To address this, we perform another 

sensitivity analysis where we adjust the α level 

based on the sample size. Further elaboration 

Note. In our simulation study, we vary several factors such as the number of variables: 𝑝 ∈
 ሼ5, 10ሽ, the density: sparse / dense, the influence of a latent confounder: absence / presence, 
and the sample size: 𝑁 ∈ ሼ50, 150, 500, 1000, 2000, 3000, 4000, 5000, 7500, 10000ሽ. This results in a 2 × 
2 × 2 × 10 simulation design, with each combination of factors (except for 𝑁) yielding a unique 
model structure. Note that the edge between X1 and X2 (long-dashed line − −) in the 5-variable 
models (top row) is only present in the conditions without a latent confounder. 
 

Figure 11. Simulation settings. 
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on this analysis will be provided in Appendix H 

in the SOM. All simulations are performed us-

ing R software version 4.2.3 (R Core Team, 

2023).  

4.3 Evaluation Metrics 

As discussed in Section 3, the algorithms at-

tempt to recover the ancestral graphs implied 

by the underlying DCG. In order to evaluate the 

performance of each algorithm, we compare 

how well it recovers the true ancestral graph. 

To do this, we first need to construct a true an-

cestral graph for each simulated condition, 

which can then be compared to the estimated 

graphs. The true ancestral graph for each DCG 

considered in our simulation study is shown in 

Figure 12. For those interested, a step-by-step 

procedure for deriving a true ancestral graph 

from a DCG is provided in Appendix E in the 

SOM.  

For assessment, we use both local and global 
evaluation metrics. At the local level, we look at 

the individual edge-endpoints and compare 

whether they match the corresponding end-

point of the true graph. At the global level, we 

look at the graph structure as a whole and 

measure the distance between the true and es-

timated graph, assessing how closely the esti-

mated graph’s structure matches the true 

graph’s structure. As the local metrics, we uti-

lize precision, recall, and uncertainty rate. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑟𝑎𝑡𝑒 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠 (○)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒 − 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡𝑠
 

Note. Each panel in the 
figure depicts the true 
ancestral graph for each 
simulated condition. Di-
rected edges denote an-
cestral relationships (A  
B means A is an ancestor 
of B), bidirected edges in-
dicate the presence of la-
tent confounders (A  B 
means there is a latent 
confounder between A 
and B), and undirected 
edges denote mutual an-
cestral relationships, 
thereby indicating cyclic 
relationships between 
the corresponding varia-
bles (A — B means A and 
B are ancestors of each 
other, implying the pres-
ence of a cyclic relation-
ship between them). For 
more information on how 
to derive the true ances-
tral graph from a DCG, 
see Appendix E in the 
SOM. p = number of varia-
bles; LC = latent con-
founder. 
 

Figure 12. True ancestral graph for each condition. 
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Precision reflects the prediction accuracy (i.e., 

out of all predicted cases, how many are cor-

rect), and recall reflects the retrieval rate (i.e., 

out of all true cases, how many are retrieved). 

Each edge-endpoint in a resulting graph can 

fall into one of four categories: no edge-end-

point (null), arrow head (>), arrow tail (−), and 

circle (○). Given that circle endpoints indicate 

that an algorithm is unsure of the direction of 

causal relations, the uncertainty rate is defined 

as the proportion of the circle endpoints pre-

sent in the output. For example, consider the 

example PAG shown in Figure 13(b). The uncer-

tainty rate for this PAG can be calculated as 3

20
, 

where the number of circle endpoints is 3, and 

the total number of edge-endpoints is 20 

((5
2
) × 2 = 20). For the other non-circle end-

points, we compute the precision and recall. As 

an example, suppose that Figure 13(a) is the 

true ancestral graph and Figure 13(b) is the es-

timated PAG output. We can then construct a 

confusion matrix of the estimated versus true 

edge-endpoints.8 Based on the confusion ma-

trix shown in Figure 13(c), we can compute the 

           
8 This example is based on the 5-variable sparse condition with a latent confounder shown in the 
top left panel of Figure 11.  

precision and recall for each type of non-circle 

endpoints. For the arrow head (>), for instance, 

the precision and recall are computed as: preci-

sion = 4

4+3+0
 and  recall  = 4

4+0+0
. Note that the cir-

cle endpoints are not considered in the calcula-

tion of precision and recall and therefore they 

are greyed out in the confusion matrix.  

As the global metric, we use the structural 
Hamming distance (SHD) (de Jongh & 

Druzdzel, 2009). SHD quantifies the level of dif-

ferences between two graphs by counting the 

number of edge insertions, deletions, and di-

rection changes required to move from one 

graph (estimated graph �̂�) to the other (true 

graph 𝐺). It can be formulated as: SHD = A + D + 

C, where A, D, and C represent the number of 

added edges, deleted edges, and changes in 

edge-endpoints, respectively. A lower SHD 

value suggests that the estimated graph (�̂�) is 

more closely aligned with the true graph (𝐺), in-

dicating a better recovery of the true graph 

structure. For example, the SHD value for the 

PAG output in Figure 13(b) — provided that the 

true ancestral graph is Figure 13(a) — is 6, which 

Note. For the purpose of illustration, we consider the 5-variable sparse condition with a latent 
confounder shown in the top left panel of Figure 11. Panel (a) displays the true ancestral graph, 
while panel (b) presents an example of the estimated PAG output. Panel (c) shows the confu-
sion matrix for the estimated versus true edge-endpoint, where the true endpoints are pre-
sented in rows and the estimated endpoints in columns. There are in total four possible edge-
endpoints that can occur in an output: arrowhead (>), arrow tail (—), null (no endpoint), and cir-
cle (○). The circle endpoints, however, are not counted toward the calculation of precision and 
recall, and thus are greyed out in the table.  
 

Figure 13. Example performance evaluation. 
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is calculated by summing: 0 (A) + 0 (D) + 6 (C). 

As such, in contrast to the precision and recall 

metrics, which omit circle endpoints in their 

computation, and the uncertainty metric, 

which directly counts only the degree of circle 

endpoints, the SHD metric treats circle end-

points as equivalent to any other type of end-

point error.  

4.4 Simulation Results 

In this section, we will report the results of the 

simulation study using the fixed values of B 

matrices. First, we will present the overall per-

formance of the considered algorithms based 

on the structural Hamming distance (SHD), 

and then we will take a more detailed look into 

their performance using precision, recall, and 

uncertainty rate.  

4.4.1 Performance on Global Metric 

The SHD values for each algorithm per condi-

tion are shown in Figure 14, where the points 

and shaded area represent the average SHD 

values of 500 iterations and the corresponding 

interquartile range (IQR), respectively. As dis-

cussed in Section 4.3, a lower SHD value indi-

cates a better performance, as it means that 

the estimated graph is closer to the true graph. 

Overall, the FCI and CCI algorithms perform 

better in sparse conditions, while the CCD algo-

rithm outperforms the others in dense condi-

tions. Additionally, the performance of all three 

algorithms is generally worse in dense condi-

tions than in sparse conditions. Interestingly, in 

small models (p = 5) with high density (second 

and fourth columns from the top row of Figure 

14), the SHD values momentarily decrease and 

then start increasing again as the sample size 

(N) becomes larger. This is partly against our ex-

pectation that the SHD values would decrease 

monotonically with increasing sample size. Fur-

thermore, we do not observe any significant 

contrasting patterns between conditions with 

and without latent confounders. This is contrary 

to our expectation that CCD would perform rel-

atively better in conditions without latent con-

founders, while FCI and CCI would perform bet-

ter in conditions involving latent confounders 

as they can handle latent confounding. 

4.4.2 Performance on Local Metrics 

In what follows, we will further examine the per-

formance of the algorithms using local metrics, 

while addressing some of the unexpected find-

ings discussed previously in Section 4.4.1. These 

Note. The sample size (N) is shown on the x-axis, and the SHD values are shown on the y-axis. 
Each point represents the average SHD value across 500 simulations, while the shaded area 
represents the interquartile range (IQR). p = number of variables; LC = latent confounder. 
 

                 

                      

 
  
  

 
  
  
 

 

  

  

  

  

  

  

  

  

 

         

   
Figure 14. Structural Hamming distance (SHD). 
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include (i) the observation that CCI and FCI out-

perform CCD in sparse conditions, even when 

latent confounders are not present and (ii) the 

SHD values increase instead of decreasing with 

increasing sample size in the 5-variable dense 
conditions.  

Note. The sample size (N) is shown on the x-axis, and the corresponding metric values are 
shown on the y-axis. Each point on the graph represents the average of iteration-specific val-
ues of precision (top panel), recall (middle panel), and uncertainty rate (bottom panel) for each 
condition, with the shaded area indicating the interquartile range (IQR). p = number of varia-
bles; LC = latent confounder. 
 

                 

                      

 
 

 
 
 

   

   

   

   

   

   

   

   

   

   

             

                 

                      

 
 

 
 
 

   

   

   

   

   

   

   

   

          

                 

                      

 
 

 
 
 

   

   

   

   

   

    

    

    

    

    

 

               

         

Figure 15. Precision, recall, and uncertainty rate. 
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The results for precision, recall, and uncertainty 

rate for each algorithm are summarized in Fig-

ure 15, where each point represents the aver-

age value of the metrics over 500 iterations in 

the corresponding condition, and the shaded 

area represents the interquartile range (IQR) of 

the values obtained. As with the SHD results, 

we observe that the CCI algorithm generally 

exhibits high precision and recall in sparse con-

ditions. On the other hand, the FCI algorithm 

records low precision and recall, even lower 

than CCD. This might seem contradictory at 

first glance, given that FCI has better SHD val-

ues than CCD in most conditions (except for a 

few dense cases). However, this can be ex-

plained by the overall low uncertainty rate of 

FCI as opposed to the high uncertainty rate of 

CCD, as shown in Figure 15(c). FCI tends to 

guess directions without necessarily output-

ting circles, while CCD tends to produce circles 

rather than guessing directions. This con-

trasting behavior consequently leads to FCI 

           
9 These PAGs are constructed by assigning each edge-endpoint to the endpoint type that appears 
most frequently across all iterations. 

 
10 Similar patterns are observed in the other sparse conditions, as shown in the first and third col-
umns of Figure 15. 

 

having better SHD values than CCD. To illus-

trate this point further, we examine the most 

frequently estimated PAGs from each algo-

rithm in the 5-variable sparse condition without 

a latent confounder presented in Figure 16.9 In 

Figure 16(c), we can observe the typical orient-

ing behavior of FCI, where it guesses the direc-

tions for every edge endpoint (i.e., not conserva-

tive), in contrast to CCD, which often produces 

circles (i.e., conservative), as shown in Figure 

16(b). Based on the true graph shown in Figure 

16(a), we can calculate the SHD: 9 for CCD (Fig-

ure 16(b)), 7 for FCI (Figure 16(c)), and 4 for CCI 

(Figure 16(d)). As such, FCI achieves a lower SHD 

value than CCD, despite having relatively lower 

precision and recall values due to some incor-

rectly predicted edge-endpoints.10 This high-

lights the distinct properties of the metrics 

used in our study. SHD is agnostic about 

whether an algorithm is conservative or less 
conservative, since it measures all differences 

between the estimated and true graphs, 

Note. Panel (a) shows the true ancestral graph of the 5-variable sparse condition without a la-
tent confounder. Panels (b), (c), and (d) present the most frequently occurring PAGs in the 5-
variable sparse condition without a latent confounder resulted from the CCD, FCI, and CCI al-
gorithms, respectively. They were obtained by picking the most frequent type of edge-end-
points produced by each algorithm from 500 simulations with a sample size of 1000. 
 

Figure 16. Frequently estimated PAGs in the 5-variable sparse condition without a latent 
confounder. 
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including the circle marks. As a result, it penal-

izes an algorithm for being conservative as 

much as for making incorrect predictions. On 

the other hand, precision and recall only con-

sider non-circle endpoints, while disregarding 

the circle marks. Therefore, they penalize an al-

gorithm for making incorrect predictions but 

not for being conservative (i.e., producing cir-

cles).  

In addition, the comparison between CCI and 

CCD based on precision and recall in Figure 15 

reveals only a subtle difference in performance, 

even in the 5-variable sparse conditions where 

CCI outperformed CCD significantly in terms of 

SHD. This can be again attributed to CCD hav-

ing a comparatively high uncertainty rate. 

From the PAG estimated by CCD in Figure 

16(b), it can be observed that all of the direc-

tions predicted by CCD are correct, but the 

PAG contains a fairly large number of circle 

endpoints. These circle endpoints lead to a 

poorer SHD value for CCD, even though it ex-

hibits comparably high precision and recall for 

correctly predicting directions. Moreover, fur-

ther examination of the resulting PAGs shows 

that CCI performs better than CCD in detecting 

mutual ancestral relationships in cyclic struc-

tures. For instance, in Figure 16(b), CCD as-

signed all circle marks to the cycle involving X2, 

X3, and X4, while CCI correctly identified the mu-

tual ancestral relationships in the cycle with 

undirected edges (—), as shown in Figure 16(d). 

This superiority of CCI in recovering mutual an-

cestry in cycles was consistently observed in 

other conditions as well, suggesting that this 

property is a significant factor contributing to 

CCI’s overall better performance compared to 

other algorithms, even in the absence of latent 

confounding.  

With respect to the unexpected increase in 

SHD values in the 5-variable dense conditions, 

we also observe an unusual decrease in preci-

sion and recall as the sample size increases 

(second and fourth panels from the top rows of 

Figure 15(a) and Figure 15(b)), along with an 

increase in the uncertainty rate (second and 

fourth panels from the top row of Figure 15(c)), 

indicating that more circle endpoints appear in 

the resulting PAGs as the sample size grows. 

Learning a dense causal structure is generally 

more challenging, because there is less infor-

mation available about the conditional inde-

pendence relations when a large number of 

vertices are connected by edges (i.e., almost 

everything is dependent on everything else). 

This problem is further compounded in the 

presence of cycles, as all variables that are part 

of cycles are completely dependent on each 

other, making it even more challenging to ob-

tain information about independence relations. 

Therefore, algorithms tend to fail to orient any 

edges and mostly output only circle endpoints 

in dense cyclic graphs. The decline in precision 

and recall, along with the rapid increase in un-

certainty rate observed in Figure 15 for the 5-
variable dense conditions, are primarily due to 

this challenge in high-density situations — as 

the sample size becomes larger, relatively weak 

edges start getting picked up by the algo-

rithms, leading to denser structures that make 

causal discovery exceedingly difficult.  

However, interestingly, we also note a slight in-

crease in both precision and recall for the 5-var-
iable dense conditions when the sample size is 

relatively small, accompanied by a small drop in 

the SHD (second and fourth panels from the 

top row of Figure 14). This might seem counter-

intuitive, as we typically expect the algorithms 

to learn causal structures more accurately with 

larger sample sizes. But, in fact, it is possible to 

lose the correct edge orientation when the 

sample size is large, particularly in the case of a 

dense graph with weak edges (Eigenmann et 

al., 2017). Figure 17 illustrates a simple example 

case where the inclusion of a weak edge leads 

to the loss of edge orientation. With a large 

sample size, algorithms are likely to pick the 

weak edge between X1 and X2, resulting in an 

uninformative undirected graph, as shown in 

Figure 17(d). However, with a small sample size, 

algorithms are more likely to miss the weak 
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edge and identify the collider X3, thereby ob-

taining the correct edge orientation, as shown 

in Figure 17(c). In our 5-variable dense scenar-

ios, we run into a similar situation. There is a rel-

atively weak edge between X2 and X5, which is 

not detected by algorithms when the sample 

size is small, resulting in some correctly ori-

ented edges. However, as the sample size be-

comes larger, the weak edge gets detected, 

and the algorithms fail to orient any edges, 

thus yielding completely undirected graphs 

(see Appendix F in the SOM for a more detailed 

explanation of the results in our 5-variable 
dense cases). This explains the small dips at the 

beginning of the SHD line graphs (Figure 14) 

and brief spikes in the precision and recall 

graphs (Figure 15) for the 5-variable dense con-

ditions with relatively small sample sizes.  

To summarize, both CCD and CCI algorithms 

show good performance, with CCI slightly out-

performing in sparse conditions and CCD in 

dense conditions. However, CCD tends to be 

more conservative in terms of edge orientation 

and produces more circle endpoints than CCI, 

which often results in higher SHD values. In 

contrast, FCI demonstrates poor performance 

           
11 When setting the 𝛼 level, we adopted a heuristic value of α =

1

√𝑁
, given that the partial correla-

tion can decay as N−1/2+ϵ for any 0 < 𝜖 < 1/2 in multivariate Gaussian cases (Kalisch & Buehlmann, 
2005). 

across most conditions, which is not immedi-

ately obvious when considering only the global 

metric, SHD. Further analysis of local metrics re-

veals that FCI often makes quick directional in-

ferences without producing circle marks, re-

sulting in comparably good SHD values but low 

precision and recall values.  

In addition, to investigate the robustness of our 

findings against the specific parameter values 

chosen in this simulation, including the coeffi-

cients of B matrices and the value of α, we con-

ducted additional simulations as part of sensi-

tivity analyses. In one of these simulations, we 

randomly sampled parameter values for B at 

each iteration. Our results were similar to the 

original simulation, with a few minor differ-

ences; we do not find any unusual kinks or dips 

in the performance curves with small sample 

sizes in the 5-variable dense conditions (see Fig-

ure 18). Instead, we find that the algorithms’ 

performance steadily improves with increasing 

sample size, which aligns with our initial expec-

tation. In another simulation, we varied the α 

level according to the sample size; decreasing α 

as the sample size (N) increased such that αN → 

0 as N → ∞ at a suitable rate.11 It is commonly 

Note. Panel (a) shows the true graph. Panel (b) displays the desired output where the collider 
structure is correctly oriented while the weak edge between X1 and X2 is also identified. Panel 
(c) presents the output graph when an algorithm fails to detect the weak edge between X1 
and X2 but correctly orients the collider structure. Panel (d) displays the output graph when an 
algorithm detects the weak edge between X1 and X2. This results in a denser graph with less 
information on independencies, leading to the loss of orientation of the collider structure. 
 
 

Figure 17. An example dense graph with a weak edge. 
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suggested to adjust α according to the sample 

size in order to ensure consistent results of con-

ditional independence tests (Mooij et al., 2020; 

Colombo et al., 2012).12 Overall, the results show 

no significant differences in the observed pat-

terns across all conditions, indicating that the 

effect of adjusting α is negligible. The detailed 

results of these sensitivity analyses can be 

found in Appendix G and Appendix H in the 

SOM, respectively.  

           

12 If alpha is not adjusted appropriately based on the sample size, it can lead to either accepting the 

null hypothesis of independence (H0 : Xi ⊥⊥   Xj | Y, where a set Y ⊆ X \ {Xi,  Xj }) with small sample sizes, 

falsely declaring everything as independent, or rejecting it with large sample sizes, failing to find 

any independence relations (Magliacane et al., 2017). 

 

5. EMPIRICAL EXAMPLE 

In this section, we present an empirical exam-

ple where we apply the three causal discovery 

algorithms studied above to real psychological 

data to assess their practical applicability. We 

begin by introducing the dataset and then pre-

sent the output of each algorithm, along with 

the corresponding statistical network model. 

Our goal is to assess whether the output PAGs 

Note. This figure illustrates the performance of each algorithm in the 5-variable dense condi-
tion without a latent confounder, where the coefficients of B were randomly sampled. The 
sample size (N) is shown on the x-axis, and the corresponding metric values are shown on the 
y-axis. Each point represents the mean value of each metric across 500 simulations, and the 
shaded area represents the interquartile range (IQR). Note that the performance under the 5-
variable dense condition with a latent confounder shows more or less the same patterns (see 
Appendix G in the SOM for details). 
 

Figure 18. Performance in the 5-variable dense condition without a latent confounder. 
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carry meaningful information about the causal 

structure and to compare the insights gained 

from these PAGs with those obtained from the 

statistical network model. To aid researchers 

with applying these methods in their own re-

search, we provide an annotated script to re-

produce our empirical analysis in the reproduc-

ibility archive of this paper: 

https://github.com/KyuriP/Discovering 

CCM/tree/main/ empirical example. 

 

5.1 Data and Model Fitting 

The dataset used in our empirical example is 

from McNally et al. (2017), where the authors fo-

cused on examining the causal relationships 

between symptoms of obsessive-compulsive 

disorder (OCD) and depression.13 Notably, the 

authors expressed a particular interest in inves-

tigating cyclic causal relationships. However, 

the causal discovery methods they were 

           
13 The data set is publicly available on the Psychological Medicine Journal webpage. 

 

familiar with were only applicable to acyclic 

causal structures, leading them to use a statis-

tical network model. Although they acknowl-

edged that the network captures statistical ra-

ther than causal relationships, they argued that 

statistical network analysis addresses a key lim-

itation of the acyclic causal discovery algorithm, 

which is excluding the possibility of feedback 

loops (cycles). Their explicit interest in cyclic 

causal discovery makes this dataset an ideal 

candidate for testing the cyclic causal discovery 

algorithms discussed in the current paper. 

The dataset consists of 408 observations and 26 

variables, comprising 16 depression symptoms 

and 10 OCD symptoms, all with no missing val-

ues. The severity of each symptom was meas-

ured using a four-point Likert scale, with 0 indi-

cating no symptoms and 3 indicating extreme 

symptoms. The participants’ age ranged from 

18 to 69 years, with a mean of 31.1 and a standard 

deviation of 12.2. In this paper, we focus our  
Table 2 
Summary of depression symptoms. 

 

Symptom (abbreviation) Mean (SD) 

1. Sleep-onset insomnia (ons) 1.20 (1.07) 

2. Middle insomnia (mdd) 1.44 (1.07) 

3. Early morning awakening (lat) 0.81 (1.07) 

4. Hypersomnia (hyp) 1.01 (0.99) 

5. Sadness (sad) 1.55 (0.94) 

6. Decreased appetite (dcp) 0.49 (0.72) 

7. Increased appetite (inc) 0.44 (0.87) 

8. Weight loss (wghtl) 0.50 (0.94) 

9. Weight gain (wghtg) 0.67 (1.04) 

10. Concentration impairment (cnc) 1.48 (0.87) 

11. Guilt and self-blame (glt) 1.56 (1.17) 

12. Suicidal thoughts (scd) 0.63 (0.82) 

13. Anhedonia (anh) 1.27 (1.05) 

14. Fatigue (ftg) 1.33 (0.95) 

15. Psychomotor retardation (rtr) 0.66 (0.81) 

16. Agitation (agt) 1.10 (0.93) 

Note. SD = Standard Deviation.  

https://github.com/KyuriP/Discovering_CCM/tree/main/empirical_example
https://github.com/KyuriP/Discovering_CCM/tree/main/empirical_example
https://github.com/KyuriP/Discovering_CCM/tree/main/empirical_example
https://www.cambridge.org/core/journals/psychological-medicine/article/abs/comorbid-obsessivecompulsive-disorder-and-depression-a-bayesian-network-approach/DAA4E2352A9E26809A4EAE35C366E900#supplementary-materials
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analysis on a subset of the variables — depres-

sion symptoms — in order to keep the model 

size manageable and facilitate the interpreta-

tion of the estimated PAGs. For a summary of 

the depression symptom variables, please refer 

to Table 2. 

To compare the results of the cyclic causal dis-

covery algorithms with those of network analy-

sis, we estimated a Gaussian graphical model 

(GGM). In a GGM, the edges signify partial cor-

relations between pairs of nodes, controlling 

for the rest of nodes in the network with the as-

sumption that the variables follow a normal 

distribution. (Epskamp et al., 2018b). To obtain 

a sparse network, we used the graphical lasso 
(glasso) method to regularize partial correla-

tions, such that small partial correlations are 

driven to zero and therefore do not appear in 

the network (Friedman et al., 2008). For the 

causal models, we ran all three algorithms 

(CCD, FCI, and CCI) while setting the alpha level 

to 0.01 (α = 0.01) as a rough way to correct for 

spurious edges resulting from a relatively large 

set of variables (Zhang et al., 2012). As in the 

simulation study, we used partial correlations 

to test for conditional independencies. In the 

following section, we will present the esti-

mated models and interpret the findings from 

each model while comparing them to one an-

other. 

5.2 Empirical Analysis Results 

The causal models estimated by each algo-

rithm (i.e., PAGs) and the GGM are depicted in 

Figure 19. Upon examining the GGM presented 

in Figure 19(a), we can identify three symptom 

clusters that are highly interconnected within 

themselves but less connected with the rest. 

On the right-hand side of the network, we see 

symptoms related to physical weight and ap-

petite: weight gain (wghtg), weight loss 

(wghtl), increased appetite (inc), and de-

creased appetite (dcp), with particularly strong 

partial correlations between inc – wghtg and 

dcp – wghtl. Towards the bottom of the net-

work, we see three symptoms relating to 

insomnia: early morning awakening (late), 

sleep onset insomnia (ons), and middle insom-

nia (mdd). The remaining items towards the left 

side of the network form a single cluster. Here, 

we observe strong connections among several 

symptoms, including psychomotor retardation 

(rtr) – concentration impairment (cnc) – fatigue 

(ftg) – anhedonia (anh) – sadness (sad) – suicidal 

thoughts (scd). Especially, fatigue, anhedonia, 

and sadness emerge as the most central symp-

toms based on the number and strength of 

connections they have with the other nodes in 

the network. As McNally et al. (2017) note, this is 

in accordance with the general clinical observa-

tions where sadness and anhedonia, as the two 

gateway symptoms, are necessary for a diagno-

sis of depression. 

Looking at the PAG from the CCD algorithm 

shown in Figure 19(b), we can read off infor-

mation about possible directions of causal rela-

tions between these variables. Overall, the esti-

mated structure is not too different from that of 

the GGM, in terms of the presence or absence 

of edges, but it is more sparse. The estimated 

PAG from CCD reveals that fatigue and anhe-

donia still remain central nodes. However, in 

the causal graph, we can now attribute their 

centrality to the fact that fatigue is the (indirect) 

effect of many variables, and anhedonia is the 

(indirect) cause of many variables — the direc-

tional information that could not be obtained 

from the statistical network model above. The 

three-cluster structure observed in the GGM is 

also present in this PAG, with only a few edges 

linking the separate clusters. For example, on 

the right side of the graph, we can see that in-

creased appetite (inc) is an ancestor of guilt 

(glt), and weight loss (wghtl) is an ancestor of 

early morning awakening (lat). Anhedonia 

(anh) also plays an important role in linking 

these separate symptom clusters, acting as an 

ancestor of both early morning waking (lat) and 

decreased appetite (dcp). On the left side of the 

graph, we observe an intricate network where 

most of the variables are involved in a web of 
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cyclic ancestral relationships.14 While it is 

tempting to interpret these ancestral patterns 

as those of direct cyclic causal relationships, 

readers should exercise caution. As previously 

demonstrated in Figure 4 from Section 3.2.1, cy-

clic causal relationships would be represented 

by undirected edges (—) in a PAG, not by pat-

terns of directed ancestral relationships. In ad-

dition, the dotted-underlining of the variables 

such as fatigue ( ftg ) and guilt ( glt ) likely indi-

cates that not all the ancestral relationships 

shown in this PAG can be mapped onto direct 

causal relationships in the corresponding DCG. 

Hence, the structures that appear as cycles in 

this PAG may not necessarily imply the same 

direct causal cycles in the underlying DCG. De-

spite the rather complicated nature of inter-

preting the PAG, we believe that it provides 

more insightful information on the causal dy-

namics of depression symptoms when com-

pared to the GGM, given that the PAG provides 

directional information, indicating the causal 

flow of variables, which cannot be obtained 

from the GGM.  

As we have outlined previously, a key limitation 

of the CCD algorithm is its reliance on the as-

sumption of causal sufficiency (i.e., the absence 

of unobserved confounders). If this assumption 

is violated, the PAG will not accurately reflect 

the causal relationships. This limitation is ad-

dressed by the CCI and FCI algorithms, which 

allow for the presence of latent confounders. 

Figure 19(c) and Figure 19(d) show the esti-

mated PAGs from CCI and FCI, respectively. 

The overall structure is reminiscent of the PAG 

obtained from CCD, with three distinct clusters. 

However, the PAGs generated by CCI and FCI 

contain fewer edges, resulting in more inde-

pendent clusters. Also, these PAGs feature bidi-

rected edges (↔), indicating the presence of la-

tent confounders. The CCI algorithm, in partic-

ular, produced a significant number of 

           
14 The cyclic structures include chains such as fatigue (ftg) → concentration (cnc) → psychomotor 
retardation (rtr) → fatigue (ftg), or longer chains like concentration (cnc) → agitation (agt) → guilt 
(glt) → sadness (sad) → suicidal thoughts (scd) → guilt (glt) → concentration (cnc). 

 

bidirected edges, suggesting the presence of 

latent confounders between almost every vari-

able (see Figure 19(c)). On the other hand, the 

PAG generated by FCI shown in Figure 19(d) has 

only a few bidirected edges but more circle 

endpoints. Both CCI and FCI identified some 

common bidirected edges, including cnc ↔ ftg, 

agt ↔ cnc, and agt ↔ glt, indicating that there 

are likely to be latent confounders present be-

tween these variables. This is consistent with 

previous research that has shown, for example, 

chronic physical illness to be a potential con-

tributing factor to symptoms such as concen-

tration impairment (cnc) and fatigue (ftg) (Men-

zies et al., 2021;  Goërtz et al., 2021; de Ridder et 

al., 2008). In addition, both CCD and FCI pre-

dicted some common directional features, 

such as rtr ∗→        ftg, hyp ∗→        ftg, scd ∗→       glt, and anh 
∗→       dcp. For example, anh ∗→       dcp means that an-

hedonia may or may not cause decreased ap-

petite, but decreased appetite does not cause 

anhedonia, which also partly aligns with a pre-

vious study, where appetite loss is identified as 

one of the features of anhedonia (Coccurello, 

2019). 

Overall, this example highlights that the PAGs 

produced by cyclic causal discovery algorithms 

provide unique insights into possible causal re-

lationships that cannot be gained through net-

work analysis alone. For instance, interpreting 

the CCD output (Figure 19(b)) provides some di-

rections for investigating potential intervention 

targets, a type of inference often of interest in 

psychological network analysis (Ryan et al., 

2022; Ryan & Hamaker, 2022; Rodebaugh et al., 

2018; Bringmann et al., 2019). Anhedonia (anh) 

could be a promising intervention target as it 

(indirectly) causes many other symptoms and 

acts as a bridge that connects different clusters 

of symptoms. Guilt (glt) also acts as a bridge to 

many sub-clusters of symptoms, and so might 

be effective in breaking ties and deactivating 
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the overall system. These causal inferences are 

challenging to make in network analysis, which 

lacks directionality, making it difficult to deter-

mine the driving node. By solely looking at 

Note. Panel (a) shows the statistical network model (i.e., Gaussian graphical model) estimated 
from the empirical data on depression symptoms. Panels (b), (c), and (d) show the PAG esti-
mated by the CCD, CCI, and FCI algorithm, respectively. ons = sleep onset insomnia; mdd = 
middle insomnia; lat = late (early morning awakening); hyp = hypersomnia; sad = sad; dcp = de-
creased appetite; inc = increased appetite; wghtl = weight loss; wghtg = weight gain; cnc = 
concentration impairment; glt = guilt; scd = suicidal thoughts; anh = anhedonia; ftg = fatigue; 
rtr = psychomotor retardation; agt = agitation. 
 

Figure 19. A statistical network model and PAGs estimated from empirical data. 
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Figure 19(a), one might assume that fatigue 

should be the target node due to its numerous 

thick edges, but in the causal structure, this 

may not be accurate as it is primarily an effect 

node without direct causal influence on other 

symptoms. In addition, our findings show that 

the algorithms generally agree on many fea-

tures, including the presence or absence of 

causal relations and some of the causal direc-

tions, which are in line with prior research, fur-

ther enhancing their plausibility. However, the 

choice of which output PAG to pay most atten-

tion to depends on our degree of confidence in 

the assumptions underlying each algorithm. 

While the most informative PAG is generated 

by CCD, it makes strong assumptions about 

the absence of unobserved confounding and 

the linearity of causal relations. On the other 

hand, CCI suggests that most or all relation-

ships between symptoms are likely influenced 

by latent confounding. FCI also flags the possi-

bility of latent confounding but recovers differ-

ent directed ancestral relations than CCI, as it 

makes use of different orientation rules. In gen-

eral, FCI may be preferred over CCI when the 

linearity assumption does not hold, but CCI 

may be more appropriate in cases where the 

linearity assumption holds, as suggested by 

our simulation study. 

Finally, to ensure the reliability of our findings, 

we conducted an additional stability analysis 

by running the algorithms on multiple random 

subsets of the data and retaining only the 

causal relations that were consistently discov-

ered. This analysis confirmed that the identified 

causal relations from our original analysis are 

reliable such that they are not undermined by 

small variations in the data. Further details re-

garding this analysis can be found in Appendix 

I in the SOM. 

6. DISCUSSION 

In this paper, we studied constraint-based cy-

clic causal discovery algorithms in typical psy-

chological research settings, with a focus on 

identifying an effective algorithm for studying 

the underlying cyclic causal structure. We pro-

vided a comprehensive overview and didactic 

treatment of cyclic causal discovery by outlin-

ing the properties of three specific algorithms: 

CCD, FCI, and CCI. We assessed the perfor-

mance of these algorithms under varying con-

ditions through a simulation study, and we also 

demonstrated their practical applicability in 

psychological research by applying them to 

empirical data. Our results suggested that the 

CCI algorithm generally performed well, partic-

ularly in sparse conditions, and the CCD algo-

rithm tended to outperform the others in dense 

conditions. The FCI algorithm performed poorly 

across all conditions, mostly guessing the direc-

tions of edges, though notably, our simulation 

was limited to studying systems with linear 

causal relations. Our empirical example 

showed that causal discovery methods pro-

vided more detailed and richer insights into the 

underlying causal dynamics of depression than 

the statistical network model, which in fact was 

found to contain numerous spurious edges, 

rendering it unsuitable for serving as a causal 

skeleton (Ryan et al., 2022).  

With this paper, we aimed to provide empirical 

researchers with guidance on selecting an ap-

propriate cyclic causal discovery algorithm for 

studying causal relationships. Our findings indi-

cate that no single algorithm is suitable for all 

cases, and the choice of algorithm should be 

based on the characteristics of the causal sys-

tem of interest. If the causal system is believed 

to be relatively sparse, then the CCI algorithm 

may be preferred, as it performs well under 

such conditions. Conversely, if the system is 

considered to be comparatively dense, re-

searchers may opt for the CCD algorithm. Also, 

researchers need to consider their priorities 

when selecting an algorithm. If avoiding incor-

rect edge orientations is a priority, then the 

CCD algorithm, which is more conservative in 

edge orientation, would be the preferred 

choice. However, if acquiring more insights into 

causal relationships is a priority, even if it means 

accepting some incorrect edge orientations, 
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then CCI would be the more suitable option. 

Although the impact of violating assumptions 

was not entirely clear from our simulation 

study, researchers should assess which as-

sumptions are relevant and critical for the par-

ticular nature of the causal system they seek to 

study, as each algorithm makes different as-

sumptions. Despite the complexity involved in 

using cyclic causal discovery methods, we em-

phasize that these techniques are more in-

formative than statistical network analysis 

when exploring the underlying causal struc-

ture. 

However, we acknowledge that causal discov-

ery in cyclic settings entails theoretical and 

practical challenges, and that much future 

work remains to be done to gain a better un-

derstanding of the behavior of causal discovery 

algorithms. In our simulation study, we re-

stricted ourselves to a set of fixed causal struc-

tures with fixed weights instead of randomly 

sampling graph structures, which is a more 

typical approach for simulating models (Mooij 

et al., 2020; Strobl, 2019; Colombo et al., 2012). 

We chose fixed structures to prioritize the ex-

plainability and interpretability of the results, as 

using randomly sampled structures would not 

have allowed us to assess individual configura-

tions and edges as thoroughly as we did with 

the fixed structures. However, our use of fixed 

structures limits the generalizability of our find-

ings, as we only studied a small number of 

structures. This limitation also made it chal-

lenging to assess algorithm performance in 

scenarios with varying latent variables. Within 

our fixed structure, which involved a relatively 

small number of variables, latent variables had 

a limited overall influence, while the (high) den-

sity primarily impacted the algorithms’ perfor-

mance. Consequently, our results did not 

clearly reveal the anticipated differences in 

performance between CCD and FCI/CCI in the 

presence of latent variables. Although our sen-

sitivity analysis showed some level of robust-

ness to variations in the weights of the causal 

structure, our limited exploration of structural 

variability remains a substantial constraint in 

our study. One possible approach to improve 

the generalizability of our findings is to expand 

the simulation settings by incorporating a ran-

dom graph structure at each iteration. How-

ever, this approach would be computationally 

intensive, as it requires verifying the cyclicity 

and equilibrium condition for each structure 

and iterating until satisfied. Future studies can 

explore the feasibility of this approach in more 

detail. 

Furthermore, certain operational details of the 

algorithms were not considered in the assess-

ment of their performance in our simulation 

study. For instance, the CCD algorithm gener-

ates additional underlinings that convey more 

information about the allowable patterns of di-

rect causal relationships in the equivalence 

class of DCGs. However, this additional infor-

mation is not provided by the CCI and FCI algo-

rithms, and to make the algorithm outputs di-

rectly comparable, we did not account for this 

in our simulation study. While we examined the 

uncertainty rate to evaluate the informative-

ness of the resulting PAGs for each algorithm — 

more circle endpoints indicate greater uncer-

tainty in the inferred causal relations, thereby 

implying a less informative PAG — it is possible 

that the extra underlinings from the CCD algo-

rithm may have made its output PAG signifi-

cantly more informative. To further investigate 

the usefulness of this extra information, future 

studies could explore alternative performance 

metrics, such as directly assessing the size of 

the equivalence class implied by each algo-

rithm output. This would determine the extent 

to which the PAGs are informative in inferring 

the causal structure in general, with a smaller 

equivalence class indicating a more informa-

tive PAG. Though conceptually promising, it 

could be practically challenging as the search 

space can expand exponentially with a larger 

model, and it may not be straightforward to de-

rive the size of the equivalence class when la-

tent confounders are involved. Nonetheless, it 

can be a crucial validity check on our simulation 
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results, where we found that CCD consistently 

generated less informative PAGs by producing 

more circle endpoints compared to the other 

algorithms. 

Our simulation was also limited in scope as we 

only considered Gaussian linear cases, which 

had the advantage of satisfying the global Mar-

kov condition and allowing the use of partial 

correlations to test conditional independen-

cies. Although Gaussian linear processes are 

commonly assumed in psychological research 

(Pek et al., 2018; Beller & Baier, 2013), this as-

sumption may be oversimplified and too strict 

in practice. In fact, the data used in our empiri-

cal example, which is typical of those used in 

psychological network research measured on a 

Likert scale, deviated from the Gaussian distri-

bution.15 Despite this, we proceeded with test-

ing conditional independencies using partial 

correlations. Although the exact impact of this 

misspecification on our results remains un-

clear, it may have led to misleading findings 

(Baba et al., 2004), which requires further inves-

tigation. As real-world applications often in-

volve non-linear and non-Gaussian processes, 

future studies should explore more general 

scenarios beyond linear Gaussian cases to en-

hance the practical applicability and to gain a 

more comprehensive understanding of cyclic 

causal discovery algorithms. Various flexible 

conditional independence (CI) tests have al-

ready been developed to accommodate such 

cases (Li & Fan, 2020; Canonne et al., 2018), in-

cluding non-parametric discretization-based 

CI tests (Huang, 2010) and kernel-based CI tests 

(Zhang et al., 2012), which can be applied with-

out assuming a functional form between the 

variables or the data distribution. However, 

these testing methods are often more complex 

and require larger sample sizes, making their 

practical application challenging. Hence, it 

would be an interesting extension for future re-

search to investigate the feasibility of imple-

menting these methods and their 

           
15 See Appendix J in the SOM for the distributions of all depression symptom variables. 

 

effectiveness in real-world scenarios. 

The network theory of psychopathology, which 

posits that mental disorders arise from direct 

causal interactions between symptoms and 

sustain themselves through feedback loops, 

has greatly contributed to the understanding 

of psychopathology (Borsboom, 2017). How-

ever, despite evidence demonstrating that net-

work models are inadequate as causal discov-

ery tools, many empirical researchers in psy-

chology have attempted to generate causal hy-

potheses from estimated network models 

(Ryan et al., 2022). Alternatively, some research-

ers have tried to estimate a DAG even though 

the theory strongly suggests the presence of 

cycles/feedback loops (McNally et al., 2017; Brig-

anti et al., 2022). In this paper, we propose a 

promising alternative, cyclic causal discovery 

methods, which are explicitly designed to re-

cover causal structure with cycles. Although we 

acknowledge that these methods come with 

caveats, such as complicated algorithm steps, 

restrictive assumptions, and somewhat difficult 

output interpretations, we believe that these 

methods can offer a valid approach to under-

standing the causal mechanisms underlying 

dynamics of mental disorders. To advance the 

network approach to studying the dynamics of 

psychopathology, we argue that it is essential 

for researchers to gain familiarity with these 

methods and explore their potential applica-

tions in psychological research. We hope that 

the current paper will remove some barriers to 

entry and encourage a more widespread adop-

tion of cyclic causal discovery methods in psy-

chological science. 
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