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The Ising model is one of the most popular models in network psychometrics. However, sta-

tistical analysis of the Ising model is difficult due to the presence of its intractable normalizing 

constant in the probability function. As a result, maximum likelihood estimation using the 

exact likelihood is only possible for small graphs, and approximation methods are needed for 

larger graphs. Two popular approximations of the exact likelihood are the joint pseudolikeli-

hood (JPL) and the disjoint pseudolikelihood (DPL). These approximations yield consistent 

estimators, but we do not know how well they perform for finite data. In this paper, we inves-

tigate the relative performance of parameter estimation methods based on the two approx-

imations and compare them to maximum likelihood estimation using the exact likelihood. 

We perform an extensive simulation study comparing the estimators in terms of bias and 

variance. We show that maximum pseudolikelihood estimation based on the JPL is a stable 

estimation method that is able to accurately approximate the maximum likelihood estimates, 

but that maximum pseudolikelihood estimation based on the DPL only works well for large 

sample sizes. 
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1. INTRODUCTION 

In recent years, graphical models have become popular for modeling the network structure of psy-

chological variables (Borsboom et al., 2021; Marsman & Rhemtulla, 2022). Graphical models specify a 

multivariate probability distribution that models the network structure of its variables (Lauritzen, 

2004); variables are represented by the nodes in the network and their partial associations or corre-

lations are represented by the edges in the network. A popular class of graphical models are undi-

rected graphical models, also known as Markov Random Fields (MRF; Kindermann & Snell, 1980; 

Rozanov, 1982). MRFs are widely used because their network structure reflects the conditional inde-

pendence or conditional dependence of their variables. The presence of an edge between two var-

iables in the network modeled by the MRF reflects their conditional dependence, but the absence 

of this edge implies that the two variables are conditionally independent, which means that the 

remaining variables in the network could fully account for their interaction. Two MRF models often 

used in psychometrics are the Gaussian graphical model for continuous variables (Fried et al., 2016; 

Lauritzen, 2004; McNally et al., 2015), and the Ising model for binary and/or ordinal variables (Ising, 

1925; Marsman & Haslbeck, 2023). 

The Ising model originates in physics, but is often used in psychometrics because binary variables 

are common in psychological data. For example, it has been used to model the presence or absence 

of symptoms of mental disorders (e.g., Borsboom & Cramer, 2013; Cramer et al., 2016), the positive or 

negative evaluation of attitude statements (e.g., Dalege et al., 2019), and the correct or incorrect an-

swers to educational or intelligence test questions (e.g., Marsman, et al., 2015; Savi et al., 2019; van der 

Maas et al., 2017). The Ising model relates to other methods that are often used in psychometrics, 

including loglinear analysis, logistic regression and latent variable models (Epskamp, Maris, et al., 

2018; Marsman et al., 2018). 

In the Ising model, we can quantify the effects, both interaction and main effects of the variables, 

with parameter estimation. However, statistical analysis of the Ising model is difficult due to its nor-

malizing constant. The normalizing constant is a sum over all possible realizations of the 𝑝 modeled 

variables and consists of 2𝑝 terms. As a result, evaluation of the normalizing constant grows expo-

nentially with the number of variables in the model, as does the runtime of its analysis. Therefore, it 

is impossible to perform an exact analysis of the model as the number of variables becomes large, 

and we cannot always rely on standard analysis options, such as Maximum Likelihood Estimation 

(MLE). Several solutions have been proposed that bypass the direct evaluation of the normalization 

constant to estimate the Ising model parameters. These solutions range from approximating the 

normalization constant (Dryden et al., 2003; Geyer & Thompson, 1992; Green & Richardson, 2002) to 

completely circumventing its computation (Møller et al., 2006; Murray et al., 2012). But these meth-

ods are computationally expensive, and therefore impractical. 

As an alternative, the pseudolikelihood is often used in the psychometric literature to approximate 

the exact likelihood because it is much less computationally demanding. There are two versions of 

the pseudolikelihood in use. The first is the joint pseudolikelihood (JPL), originally proposed by 

Besag (1975), which approximates the exact likelihood of the Ising model by replacing it with a prod-

uct of the conditional distribution of each of the 𝑝 variables in the model conditional on the remain-

ing 𝑝 − 1 variables. The second is the disjoint pseudolikelihood (DPL, Liu & Ihler, 2012), also known as 

nodewise regression, which completely bypasses the multivariate distribution that is described by 



3 advances.in/psychology 

 

 

Maximum likelihood and maximum pseudolikelihood estimators                     Keetelaar et al., 2024 
 
the Ising model, and instead separately analyzes the conditional distribution of each of the 𝑝 varia-

bles in the model conditional on the remaining 𝑝 − 1 variables. In the DPL approach, each variable 

is simply regressed on all others, using logistic regression, and the network is reconstructed in a 

piecemeal fashion (e.g., van Borkulo et al., 2014). The normalization constants for the two pseudolike-

lihood approaches consist of 2𝑝 terms, which are much easier to use than the 2𝑝 terms in the exact 

likelihood normalization constant. 

While the two pseudolikelihood approaches are computationally much less demanding than the 

exact likelihood, they provide a very crude approximation. One may wonder how well the corre-

sponding maximum pseudolikelihood estimators approximate the maximum likelihood estimators. 

Maximum pseudolikelihood estimators have been shown to be consistent in general (Arnold & 

Strauss, 1991; Geys et al., 2007), and also specifically for the Ising model (Bhattacharya & Mukherjee, 

2018; Hyvärinen, 2006). Its consistency and computational ease have ensured its popularity in the 

psychometric literature, where the JPL is often used to select the edges or relations in the Ising 

model (i.e., to test for conditional independence; Marsman et al., 2022; Marsman & Haslbeck, 2023; 

Sekulovski et al., 2023), or simply to estimate its parameters. The DPL approach is particularly popu-

lar because of its simplicity (Liu & Ihler, 2012; Ravikumar et al., 2010) and is often combined with Lasso 

estimation (Tibshirani, 1996) for edge selection (Höfling & Tibshirani, 2009; van Borkulo et al., 2014). 

In addition, both pseudolikelihood methods are used in several R packages for analyzing the Ising 

model. For instance, IsingFit (van Borkulo et al., 2014) and MGM (Haslbeck & Waldorp, 2020) both 

use the DPL approach, while bgms (Marsman et al., 2022) uses the JPL approach. 

Despite their popularity in applied psychometric research, and despite their positive asymptotic 

properties, we know very little about the relative performance of pseudolikelihood estimators com-

pared to exact likelihood estimators in finite samples. Given the importance of the pseudolikelood 

in empirical work, it is surprising that the direct comparison of the pseudolikelihood with other ap-

proaches, and particularly with the exact likelihood, is such an unexplored topic. Some work has 

been done in other areas; one result is that for exponential random graph models, the joint pseu-

dolikelihood has been found to give more biased estimates than the exact likelihood, and it seems 

to underestimate standard errors (Bouranis et al., 2018; Lubbers & Snijders, 2007; Van Duijn et al., 

2009). However, we do not know whether these results generalize to the Ising model when applied 

in psychologically relevant settings. Another result established by De Canditiis (2020) and Brusco et 

al. (2022) is that edge selection based on the JPL approach, when paired with regularization, appears 

to outperform edge selection based on the DPL approach. Unfortunately, it is unclear what aspects 

of the different pseudolikelihood approaches influence these results (i.e., bias, variance, or both). In 

conclusion, despite the popularity of pseudolikelihood approaches in psychometrics, we still know 

very little about the small-sample behavior of their estimators. A comparison of estimators based on 

the three different likelihood specifications is therefore urgently needed. 

The current paper fills the gap of a complete comparison of estimators based on the exact likelihood 

and the two pseudolikelihood approaches for the Ising model by studying their relative perfor-

mance for realistic sample sizes and network structures. In particular, we consider their bias and 

variance (i.e., their standard errors), and carry out an extensive simulation study comparing the 

methods in different settings where we vary the number of variables in the network, the sample 

size, and the type of network. 

The remainder of this paper is organized as follows. In the next section, we describe the Ising model, 
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and maximum likelihood estimation based on its exact likelihood, and maximum pseudolikelihood 

estimation based on its DPL and JPL approximations. We then discuss the simulation design, ex-

plaining the data generation conditions and the performance measures. The results of the simula-

tion are then discussed. Afterwards, we include an empirical example, in which we apply the meth-

ods to a real data set. We conclude the paper with a discussion of the implications of our results, the 

limitations of our design, and directions for future research. 

2. THE ISING MODEL AND ITS (PSEUDO) LIKELIHOODS 

In this section, we introduce the joint distribution characterized by the Ising model and the corre-

sponding fully conditional distribution of one of its variables given all the others. We then discuss 

the different versions of the likelihood used for estimation: the exact likelihood, the JPL, and the 

DPL. 

2.1 The Ising Model 

The Ising model defines a probability distribution over 𝑝 binary variables 𝑥𝑖 , where 𝑖 ∈ {1, … , 𝑝}, and 

𝑥𝑖 ∈ {0,1}. The joint probability distribution that is characterized by the Ising model is 

𝑝(𝑥) =
1

Z
 exp (∑𝑥𝑖

𝑝

𝑖=1

𝜏𝑖 + 2∑ ∑ 𝑥𝑖

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

𝑥𝑗𝜃𝑖𝑗),                    (1) 

which is based on two types of parameters: The pairwise interaction parameter 𝜃𝑖𝑗 and the threshold 

parameters 𝜏𝑖 . The interaction parameter 𝜃𝑖𝑗 reflects the strength of the pairwise interaction be-

tween variables 𝑖 and 𝑗; if it is positive, the variables tend to align their values, if it is negative, the two 

variables tend to disalign, and if it is zero, the two variables are independent of each other given the 

rest of the network variables (i.e., conditional independence). The threshold parameter 𝜏𝑖 models the 

main effect of variable 𝑖; if it is positive, we tend to observe a higher proportion of ones, and if it is 

negative, we tend to observe a higher proportion of zeros. 

The normalizing constant Z of the Ising model is 

Z = ∑ exp

𝑥∈𝒳

(∑𝑥𝑖

𝑝

𝑖=1

𝜏𝑖 + 2∑ ∑ 𝑥𝑖

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

𝑥𝑗𝜃𝑖𝑗),             (2) 

where 𝒳 = {0,1}𝑝 is the set of all possible realizations of the 𝑝-dimensional vector of binary variables 

𝑥. The number of terms in this sum is equal to 2𝑝. While its computation is perfectly feasible for small 

networks, the number of terms to evaluate is an exponential function of the number of variables, 

which does not scale well. Indeed, for a small graph with five variables, the sum has only 32 terms, 

but for a somewhat larger graph with ten nodes the number of terms increases to 1,024 , which is 

already a challenge if we have to evaluate the sum often. Because of this exponential growth, the 

exact likelihood of the Ising model can only realistically be computed for graphs up to 𝑝 ≈ 15 varia-

bles, for which the sum in the normalization constant has over 30,000 terms. 

The Ising model has been extended to ordinal variables (e.g., Marsman & Haslbeck, 2023). In that 

case, the number of terms in the normalizing constant can grow much faster (Marsman & Haslbeck, 

2023). For a network of five ordinal variables, each with five response categories, there are 3,125 terms 

in the normalizing constant, and for ten variables there are nearly ten million terms. Thus, for the 
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ordinal model, exact likelihood estimation is impossible, even for smaller graphs. This is why we fo-

cus on the Ising model for binary variables in this paper. 

The two pseudolikelihood approaches use the fully conditional distribution of a variable given all 

others, as dictated by the Ising model. The fully conditional distribution for the variable 𝑥𝑖 given all 

other variables, which are denoted by 𝑥(𝑖), is given by 

𝑝(𝑥𝑖 ∣ 𝑥
(𝑖)) =

exp{𝑥𝑖𝜏𝑖 + ∑ 𝑥𝑖𝑗≠𝑖 𝑥𝑗𝜃𝑖𝑗}

1 + exp{𝜏𝑖 + ∑ 𝑥𝑗𝑗≠𝑖 𝜃𝑖𝑗}
,                            (2) 

where the sum (∑𝑗≠𝑖 ) is over all values of 𝑗, 𝑗 ∈ {1, … , 𝑝} that are not equal to 𝑖. 

As we show below, the likelihood used in the JPL approach is simply the product of the 𝑝 fully con-

ditional distributions, one for each variable, which thus has only 2𝑝 terms. For the DPL approach, we 

consider each of the 𝑝 fully conditional distributions separately, which means that 2𝑝 terms must 

also be evaluated, but not all at once. Thus, for the two pseudolikelihood approaches, the computa-

tional time does not grow exponentially but linearly with the number of variables, making pseu-

dolikelihood estimation tractable even for larger graphs. 

2.2 Three Versions of the Likelihood Used for Estimation 

We estimate the parameters of the model by finding their optimal values for a given likelihood func-

tion. With the exact likelihood, we call the results the maximum likelihood estimators (MLEs; e.g., 

Greene, 2003), and when a pseudolikelihood is used, we call them maximum pseudolikelihood esti-

mators (MPLEs). Next, we discuss the exact likelihood and the two pseudolikelihood variants. In each 

case, it is assumed that there are 𝑛 independent observations, so that the exact likelihood or pseu-

dolikelihood is a product of the likelihood or pseudolikelihood of the individual observations. 

2.2.1 MLE 

The exact likelihood function is L(𝜏, 𝛩 ∣ 𝑋) = ∏ 𝑝𝑛
𝑣=1 (𝑥𝑣), where 𝑝(𝑥𝑣) is as in Equation (1), 𝛩 is the 𝑝 × 𝑝 

matrix of interaction parameters, 𝜏 is the vector of threshold parameters of length 𝑝, 𝑋 is the 𝑛 × 𝑝 

matrix of observations, and 𝑥𝑣 is the vector of 𝑝 realizations for a person 𝑣. The log of the likelihood is 

ℒ(𝜏, 𝛩 ∣ 𝑋) =∑(∑𝑥𝑣𝑖

𝑝

𝑖=1

𝜏𝑖 + 2∑ ∑ 𝑥𝑣𝑖

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

𝑥𝑣𝑗𝜃𝑖𝑗)

𝑛

𝑣=1

− 𝑛 × log(Z) 

where 𝑥𝑣𝑖 is the observation for person 𝑣 on variable 𝑖. 

We use the R package psychonetrics (Epskamp, 2020) to find the optimal values, i.e., the MLEs, which 

uses a quasi-Newton algorithm. The algorithm requires first and second order derivatives of the log 

likelihood function with respect to the model parameters, which are given in Appendix A. Note that 

the normalizing constant is part of their expressions, and must be recalculated in each iteration of 

the optimization algorithm. For this reason, psychonetrics only allows exact estimation for smaller 

models; it throws an error for more than 20 nodes, and for 15-20 running times are very large. 

2.2.2 MJPLE 

When the MPLE is based on the JPL, we refer to it as the MJPLE. The JPL (Besag, 1975) approximates 

the exact likelihood by the product of the 𝑝 fully conditional distributions in Equation 2, i.e., 
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L̃(𝜏, 𝛩 ∣ 𝑋) = ∏ ∏ 𝑝𝑖𝑣 (𝑥𝑣𝑖 ∣ 𝑥𝑣

(𝑖)). The log of the JPL function is 

ℒ̃(𝜏, 𝛩) = ∑(∑𝑥𝑣𝑖

𝑝

𝑖=1

𝜏𝑖 + 2∑ ∑ 𝑥𝑣𝑖

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

𝑥𝑣𝑗𝜃𝑖𝑗)

𝑛

𝑣=1

−∑∑log

𝑝

𝑖=1

𝑛

𝑣=1

(1 + exp(𝜏𝑖 +∑𝑥𝑣𝑗
𝑗≠𝑖

𝜃𝑖𝑗)). 

To maximize the log pseudolikelihood function, we use the Newton optimization algorithm (Noce-

dal & Wright, 1999). To do this, we need the first and second order derivatives of the log pseudolikeli-

hood function with respect to the model parameters. For this and for an explanation of the optimi-

zation algorithm, see Appendix A. 

2.2.3 MDPLE 

When the MPLE is based on the DPL, we refer to it as the MDPLE. The DPL (Liu & Ihler, 2012) does 

not directly approximate the exact likelihood, but instead considers each of the 𝑝 fully conditional 

distributions in Equation 2 separately. It is called disjoint because it estimates the parameters from 

each fully conditional distribution in isolation. Typically, the parameters from each fully conditional 

distribution are estimated as the parameters of a logistic regression model, hence the name node-

wise regression. We will use the base-R function glm to compute the MDPLEs. Since the pairwise 

interaction 𝜃𝑖𝑗 is part of the fully conditional distributions of the variables 𝑖 and 𝑗, the MDPLE ap-

proach provides two estimates for it (i.e. one for 𝜃𝑖𝑗 and one for 𝜃𝑗𝑖 , while in the Ising model these 

model the same interaction). We need a way to combine the two estimates, and a common ap-

proach is to simply average them (e.g., van Borkulo et al., 2014). 

3. SIMULATION 

In this section, we discuss all aspects of our simulation. First, we describe the simulation design and 

discuss the conditions under which we generate data. We then discuss how we will determined the 

parameter values of the generating Ising model throughout this design, which is not a trivial task. 

Finally, we discuss the measures we use to evaluate the performance of the three estimators in our 

simulations.  

3.1 Simulation Design 

In our simulations, we vary graph type, graph size, and sample size (number of observations). The 

graph size ranges from 5 to 15 . This range is chosen because we can still perform exact maximum 

likelihood estimation for these values. Since our goal is to show how the approximate methods com-

pare to maximum likelihood, we choose to consider only models to which we can apply all methods. 

We increase the graph size with a step size of one, meaning that we use all values between 5 and 

15. This allows us to observe what happens to the parameter estimates if the graph size gradually 

increases. In data for psychological networks, one typically finds these graph sizes as well (see: Fried 

et al., 2016; Boschloo et al., 2015, that show data for disorders with 5 to 15 symptoms). 

We consider sample sizes of 50, 100, 250, 500 and 1,000. In psychology, 500 observations are consid-

ered a moderately large sample size (Epskamp, Borsboom, et al., 2018). Therefore, we expect that 

the asymptotic properties of the estimators, such as consistency, will come into play at the large 

sample size of 1,000 observations. As we also want to show the performance of the estimation meth-

ods for smaller samples, we also include samples of 50 and 100 observations and an in-between 

sample of 250 observations. 
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We consider three different graph types to generate data in order to compare the effects of the 

underlying graph structure on the estimation methods: a complete graph that contains all possible 

edges, a small world graph (Watts & Strogatz, 1998), and a random graph (Erdős & Rényi, 1960). The 

small world and random graph types are often used in simulations of psychological network data 

(e.g., van Borkulo et al., 2014). We added a complete graph because we do not consider edge selec-

tion in this paper and the estimation methods actually assume a fully connected network. Figures 

1a - 1c show examples of a complete, a small world, and a random graph, respectively, for a model 

with ten variables. The random graph and the small world graph are generated using the R package 

igraph, the small graph with the arguments neighborhood to 2 and rewiring probability to .2. For 

the random graph we set the wiring probability to 0.3. To ensure that the smallworld networks are 

actually small worlds, we test the smallwordness, using the criteria from Humphries & Gurney 

(2008).  

Figure 1 

Examples of the graph structures, for a graph with 𝑝 = 10 variables, with (a) the complete graph, (b) 
the small world and (c) the random graph. 

 
 

 

(a) A complete graph (b) A small world graph (c) A random graph 

 

Taken together, the three graph types, eleven graph sizes, and four sample sizes give us a total of 

132 conditions for our simulation. For each of these conditions, we generate 100 datasets over which 

we average the results. Table 1 summarizes all the simulation settings. 

Table 1 

A summary of all variables and options in our simulation study. 

Variable Options Number of Options 

Graph Size 5,6, …, 14,15 11 

Sample Size 50, 100, 500, 1000 4 

Graph Type complete, small world, random 3 
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3.2 Parameters of the Data Generating Ising Model 

When we generate data from the Ising model for the different conditions of our simulation design, 

we need to choose values for its parameters. Since the Ising model can be sensitive to its parame-

ters, it may happen that we choose values that lead to degenerate data sets (i.e., data with no or very 

little variation). The problem is that we usually do not know for which parameter values this happens. 

At the same time, we want plausible parameter values that are consistent with real psychological 

data. So we look for parameter values that produce good, meaningful data sets, but also match the 

scenarios we encounter in practice. Obviously, this is not a trivial task. In the past, the data generat-

ing parameter values of the Ising model for simulations were randomly sampled from some distri-

bution (Marsman et al., 2022; Ravikumar et al., 2010; van Borkulo et al., 2014), but it is hard to argue 

that these values are realistic. An alternative approach is to use parameters estimated from real data 

(Isvoranu & Epskamp, 2023; Sekulovski et al., 2024, this issue). We chose to follow this approach. This 

means that we get parameter values that correspond to actual values for interaction and threshold 

parameters that we could see in practice. 

We selected the McNally et al. (2015) data set on PTSD symptoms assessed in Chinese adults who 

survived the Wenchuan earthquake to determine the generating parameters of the Ising model in 

our simulations. The raw data are ordinal variables consisting of five categories each, which we di-

chotomized by coding the lowest two responses as zero and the highest three responses as one. 

We then estimated the MJPLEs for the Ising model parameters on these data, which we use to 

generate new data in our simulations. A complicating factor is that the obtained MJPLEs fit the full 

graph, but not the small world and random graph types from which we want to simulate. The best 

way to proceed under these conditions is to first sample the structure according to one of the graph 

types, and then estimate the MJPLEs on the Wenchuan data given that structure (i.e., setting some 

of its interactions to zero). This can be done using the R package psychonetrics. It is important to 

note that we use this graph-based estimation strategy only to determine the generating parame-

ters of the Ising model in the different graph type conditions, not to estimate the parameters from 

these simulated data. 

The general approach to simulating the data in each condition is as follows. For a graph size 𝑝, we 

take the first 𝑝 columns of the Wenchuan dataset. Then, for each graph type we determine the gen-

erating parameters using the procedure described above. Finally, using the determined parame-

ters, we generate 100 datasets for each sample size 𝑛. 

3.3 Performance Measures 

To measure the performance of the three estimators across our simulation conditions, we compute 

their squared bias and variance. Combined, these two measures give the Mean Squared Error (MSE). 

For both measures, we distinguish between the threshold and the interaction parameters. In the 

simulation results, we focus only on the interaction parameters, as these are the most interesting 

since they model the actual graph structure. We also estimated the threshold parameters; addi-

tional results can be found in Appendix B. 

The squared bias of an estimator expresses how much the parameter estimates differ from their 

true value. In each simulation condition, we consider the thresholds and the interactions separately 

and average the squared bias over the estimated parameters. The squared bias for the interactions 

is calculated as 
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Bias2(𝛩) =
2

𝑝 (𝑝 − 1)
∑ ∑ (�̂�𝑖𝑗 − 𝜃𝑖𝑗)

2

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

, 

where 𝜃𝑖𝑗 denotes the true parameter value and �̂�𝑖𝑗 its estimated value. For the threshold variables 

this is done in the same manner. 

The variance of an estimator expresses the variability of the parameter estimates and is equal to the 

square of the standard error of the estimator. Different estimation methods have different ways of 

estimating the variance.  

We obtain the variances of the MLEs using the Fisher information matrix (Fisher, 2022, for a tutorial 

see Ly et al., 2017). For the MJPLE, we use the observed Fisher information matrix instead (Efron & 

Hinkley, 1978). However, this method may lead to underestimation of the variance (Lubbers & 

Snijders, 2007). White (1982) proposed a correction to the Fisher information matrix for misspecified 

models, such as the pseudolikelihood. The correction is called the sandwich variance estimator (see 

Greene, 2003, for a description of the estimator), and is asymptotically correct (Freedman, 2006), 

making it a suitable variance estimator for MJPLEs. We include both the “raw” estimates, from the 

observed Fisher information matrix, and the sandwich correction estimates. For MDPLEs, we max-

imize multiple functions in isolation and thus we do not have a single Fisher information matrix from 

which to estimate the variances. We therefore use a nonparametric bootstrap (Efrom, 1992), by 

resampling 1,000 datasets with replacement from the simulation data in each simulation condition, 

to estimate the variances for the MDPLEs. 

4. SIMULATION RESULTS 

In this section, we compare the MLEs, MJPLEs, and MDPLEs of the Ising model parameters in terms 

of their squared bias and variance across different simulation conditions. We first examine the 

squared bias of the estimators and then their variance.  

We highlight the results for the interaction parameter estimates, and the full results, across all sim-

ulation conditions, including the threshold parameter estimates, can be found in Appendix B. The 

results for the threshold parameters show similar patterns to the pairwise interactions but on a dif-

ferent scale, with larger biases due to the higher and more variable values of these parameters. We 

believe that the main results are summarized in this section, but the tables in Appendix B provide a 

more complete picture of the results. 

4.1 Squared Bias 

Figures 2 - 4 show the squared bias on the complete graph, the small world, and the random graph, 

respectively, for network sizes (𝑝) ranging from 5 to 15. We show the logarithm of the squared bias 

to highlight the observed differences. The x-axis corresponds to sample sizes (𝑛) 50, 100, 250, 500, 

and 1,000. We have added the dotted lines for reference at the values ln(0.1), ln(0.01), and ln(0.001). 

We observe that all three estimators are biased, and that their bias differs for small sample sizes, 

with MLEs performing best, MJPLEs performing slightly worse, and MDPLEs performing worst. 

These differences appear to be relatively small and increase with network size. For larger sample 

sizes, starting at about 250 observations, we see that all three estimators perform equally well in 

terms of bias, and that the bias becomes very small (i.e., close to or less than 0.001). This underscores 



10 advances.in/psychology 

 

 

Maximum likelihood and maximum pseudolikelihood estimators                     Keetelaar et al., 2024 
 
the consistency of the three estimators. The results for the different graph types are very similar. 

After about 250 observations, the three estimators perform similarly well, but the results are more 

different for smaller sample sizes. For the smallest sample sizes (𝑛 =  50 and 𝑛 =  100), we see that 

the bias of the MJPLEs is very close to the bias of the MLEs, regardless of graph size (and type). For 

the MDPLEs, in small samples, the bias is much larger than for the MLEs. Besides this bias, and in 

particular the difference in bias with the MLEs, becomes larger when the graph size increases. This 

effect is not present for the MJPLEs. The MLE performs best overall. Additional results, and specifi-

cally on the bias of the MJPLEs and the MDPLEs in relation to the bias of the MLEs, can be found in 

Appendix B. 

 

Figure 2  

Scatter plot of the logarithm of the mean squared bias for the three estimators against the sample 
size (𝑛) for different network sizes (𝑝) in the different panels in the case of a complete graph. 
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Figure 3 

Scatter plot of the logarithm of the mean squared bias for the three estimators against the sample 
size (𝑛) for different network sizes (𝑝) in the different panels in the case of a small world graph. 
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Figure 4 

Scatter plot of the logarithm of the mean squared bias for the three estimators against the sample 
size (𝑛) for different network sizes (𝑝) in the different panels in the case of a random graph. 

 

 

4.2 Variance 

Figures 5 - 7 show the estimated variances of the three estimators, respectively on the complete 

graph, the small world, and the random graph structure. There are two estimates of the variance of 

the MJPLEs: one obtained from the observed Fisher information (i.e., the Hessian matrix), and one 

based on the sandwich correction. The logarithm of the variances, averaged across the interaction 

parameters, is plotted on the y-axis, with the sample size (𝑛) on the x-axis. The different panels refer 

to the different network sizes (𝑝). 

Overall, we see that the uncorrected variance of the pseudolikelihood-based estimators appears to 

be smaller than the variance of the MLEs. There are some deviations from this general pattern worth 

pointing out. For example, for smaller sample sizes (i.e., n < 250), the uncorrected variance estimates 

for the MJPLEs and MDPLEs appear to be more unstable and are regularly larger than the variance 

of the MLE. The MDPLEs have very unstable variances, with exploding values for small samples to 

underestimation for larger samples. 

For some cases, the sandwich estimate of the MDPLE variances clearly overcorrects, especially for 

small sample sizes, combined with large graphs, but for less extreme cases, and thus if the sample 

size is large enough, it performs well in correcting for the underestimation, which is shown in Figure 
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8. For larger graphs, the sandwich correction overcorrects even for 𝑛 =  250, but for smaller graphs, 

it corrects well already for 𝑛 >  100. The high variance estimates might be caused by large variability, 

which gives relatively large means. The figure shows for all three graph types for an averagely large 

graph size (𝑝 =  12), that the MDPLEs and MJPLEs (raw) underestimate the variance, compared to 

the MLEs, and that the sandwich estimate corrects for this underestimation. 

 

Figure 5 

Scatter plot of the logarithm of the average estimated variances of the three estimators, with for the 
JPL both the raw and the sandwich estimator against the sample size (n) for different network sizes 
(p) in the different panels in the case of a complete graph. 
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Figure 6 

Scatter plot of the logarithm of the average estimated variances of the three estimators, with for the 
JPL both the raw and the sandwich estimator against the sample size (n) for different network sizes 
(p) in the different panels in the case of a small world. 
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Figure 7 

Scatter plot of the logarithm of the average estimated variances of the three estimators, with for the 
JPL both the raw and the sandwich estimator against the sample size (n) for different network sizes 
(p) in the different panels in the case of a random graph. 
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Figure 8  

Zoom in on the large samples of the estimated variances, with on top the complete graph, in the 
middle the small world and the bottom the random graph. It shows the log of the variance over 
sample size (n), for a graph size of p = 12. 

 

 

5. EMPIRICAL EXAMPLE 

To illustrate the different estimation methods and their comparison, we include an empirical exam-

ple. For this, we use a data set obtained from the R package BGGM1, on depression and anxiety. The 

data consist of 16 variables with 403 observations. The first 9 variables are related to depression, and 

the other 6 are related to anxiety. We include only the depression variables, resulting in a data set of 

           
1 Obtained from https://donaldrwilliams.github.io/BGGM/reference/depression_anxiety_t1.html 

https://donaldrwilliams.github.io/BGGM/reference/depression_anxiety_t1.html
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9 variables with 403 observations. Items are measured on a 4-point Likert scale. We dichotomize the 

items by coding the lowest two responses as zero and the highest two responses as one. 

Figure 9 shows the estimated interactions of the variables in the depression network. We show the 

MJPLEs, as for this data set, the interaction estimates are very similar for the three estimators, as we 

will demonstrate below. 

Figure 9 

Network plot of the depression data set, with estimated edge weights corresponding to the intrac-
tions of the JPLE. 

 

 

 

Table 2 shows the variance estimates of all interaction parameter estimates. We observe that the 

MJPLE variance is much smaller than the MLE, but with the sandwich correction, it is much closer. 

The MDPLE has more unstable estimates with higher variances. 

Figure 10 shows the relative estimates of the MJPLEs and the MDPLEs compared to the MLEs. Both 

MPLEs are very similar to the MLEs, with the MJPLEs even closer to the 366 MLEs (with an average 

absolute difference of 0.025) than the MDPLEs (with an average 367 absolute difference of 0.035). 
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Figure 10 

Scatter plot of the interaction estimates of both pseudolikelihood methods, with (a) the JPL, and (b) 
the DPL, relative to the ML interaction estimates. 

The empirical example shows that for this data set on depression symptoms, we find that the pa-

rameter estimates are similar for all three methods, and the variances fit the pattern that we found 

in the simulation study for a data set of this size (moderate graph size of 𝑝 = 9 and moderately large 

sample size 𝑛 = 403). 

 

Table 2 

Estimated variances of the interaction parameter estimates on the depression data set. 

MLE MJPLE - r MJPLE - s MDPLE 

0.354 0.090 0.239 2.633 

 

DISCUSSION 

In this paper, we have conducted a comparative simulation study of three different methods for 

estimating the parameters of the Ising model: Maximum Likelihood Estimators (MLE), which use 

the exact likelihood, Maximum Joint Pseudolikelihood Estimators (MJPLE), which use the joint pseu-

dolikelihood, and Maximum Disjoint Pseudolikelihood Estimators (MDPLE), which use the disjoint 

pseudolikelihood. A problem with many MRFs for discrete variables, and thus the Ising model, is the 

intractability of the normalization constant, which makes the exact likelihood difficult or sometimes 

impossible to compute. For this reason, pseudolikelihood approaches have become quite popular 

for estimating Ising model parameters from psychological data. Although we have a good idea of 

the asymptotic performance of pseudolikelihood-based estimators, we know very little about their 

small sample behavior. Therefore, we investigated the performance of pseudolikelihood estimators 

(a) The interaction estimates of the MLE on the x-
axis and the MJPLE on the y-axis. 

(b) The interaction estimates of the MLE on 
the x-axis and the MJPLE on the y-axis. 
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for Ising model parameters in small sample sizes and compared their performance with that of ex-

act likelihood estimation. 

There are several important findings. First, the MLE based on the exact likelihood is biased even in 

relatively large sample sizes, although the bias is not very large and decreases with sample size. For 

the larger sample sizes in our simulations, starting at about 250 observations, all three methods 

seem to perform similarly well in terms of their bias. For smaller sample sizes, the MJPLE performs 

almost as well as the MLE, while the MDPLE performs significantly worse, especially for large graphs. 

Previous results suggest that the variances of pseudolikelihood-based estimators underestimate 

the variance. There were a few cases with very small sample sizes and large graph sizes that the 

variance of the MJPLE appeared larger than the variance of the MLE. For all other cases we indeed 

see that there is underestimation for the MJPLE, and mostly also for the MDPLE, which has in gen-

eral more unstable variances. This coincides with the earlier findings of (Bouranis et al., 2018; Lubbers 

& Snijders, 2007; Van Duijn et al., 2009). The sandwich estimate corrects for this for the MJPLEs, but 

for some cases (in small samples) it overcorrects and gives large variance estimates. 

Based on these results, the pseudolikelihood-based estimators, and especially the MJPLE, appear to 

be a solid approximation method for larger sample sizes, and for smaller sample sizes, the MJPLE 

adds little additional bias over and above the bias already present in the MLE. We can therefore 

recommend using the MJPLE as a basis for estimating the parameters of the Ising model. However, 

the difference between the variance of the MLE and the MJPLE and MDPLE will affect more sophis-

ticated statistical techniques such as edge selection. For larger sample sizes, the variance of the 

MDPLE is smaller than the variance of the MJPLE, suggesting that disjoint pseudolikelihood-based 

edge selection methods have higher sensitivity but lower specificity than joint pseudolikelihood-

based methods. (Brusco et al., 2022) made this comparison and found that the specificity of the joint 

pseudolikelihood approach was indeed higher than that of the disjoint pseudolikelihood approach. 

Although this comparison was not made in their analysis, we expect the difference between edge 

selection methods using the joint pseudolikelihood and those using the exact likelihood to be closer. 

To the best of our knowledge, this is the first paper that directly compares the two pseudolikelihood-

based estimators with the MLEs for the parameters of the Ising model. In practice, the two pseu-

dolikelihood methods are used in different contexts. For example, (Marsman et al., 2022) uses the 

joint pseudolikelihood in its Bayesian edge selection approach for the Ising model, and (Marsman & 

Haslbeck, 2023) extends this to the ordinal Ising model. The disjoint pseudolikelihood, on the other 

hand, is present in most frequentist edge selection approaches, such as the EBIC-Lasso methods in 

(van Borkulo et al., 2014) for Ising models, and for mixed graphical models (Haslbeck & Waldorp, 

2020). Although we did not include it in our paper, the results of our analysis suggest that for da-

tasets with many observations, the two pseudolikelihoods can be safely used as proxies for the exact 

likelihood. However, for smaller samples, the disjoint pseudolikelihood exhibits problematic behav-

ior, both in terms of bias and variance, and thus may negatively affect the performance of existing 

frequentist approaches, at least compared to a joint pseudolikelihood or an exact likelihood-based 

approach. 

5.1 Limitations 

Although we have generated datasets under many conditions and tried to approximate reality with 

our parameter choices, the results based on these settings are still limited. We have only used 
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parameters for data generation based on a single dataset (Wenchuan). Since the Ising model is very 

sensitive to parameter values, we must be careful not to conclude that the same results would hold 

for different input parameters. Another limitation is that because we specifically wanted to compare 

the pseudolikelihood methods with the exact likelihood method, we could only analyze relatively 

small graphs. In practice, most psychological datasets have relatively few variables and many obser-

vations, so this seems to correspond to practical scenarios. However, we cannot yet draw general 

conclusions about larger models. 

5.2 Further Research 

The comparison study has shown how the approximate methods relate to the exact likelihood esti-

mator. With this work, we have provided an overview of the performance of three methods for pa-

rameter estimation in the Ising model. In future research, we could extend this to structure learning 

and compare the different estimation methods in their ability to recover the underlying graph struc-

ture. In addition, we could extend the comparison study to a Bayesian framework, both for param-

eter estimation and structure learning. We could then incorporate priors and observe their effects 

on the different estimators. Furthermore, we compared the methods in terms of bias and variance, 

but in the future, we could use additional comparison criteria such as efficiency and computational 

time. A final extension of the research could be in the direction of different models. We have now 

considered the binary Ising model; we could extend this to an ordinal model with the necessary 

adjustments. 
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APPENDIX A: Derivatives and Optimization 
 
In this section, we discuss the Newton-Raphson optimization algorithm that we used for the joint 

pseudolikelihood. We also derive the first and second order partial derivatives of the (log) joint 

pseudolikelihood and the (log) maximum likelihood functions, which are used for the optimization 

algorithm and for estimation of the variances. First, we discuss the optimization. Second, we derive 

the partial derivatives of the maximum likelihood and third for the joint pseudolikelihood function. 

 

Newton-Raphson Optimization 

Newton-Raphson optimization (Nocedal & Wright, 1999) is a numerical optimization method that 

follows an iterative approach. If we consider an arbitrary parameter vector (or matrix) 𝜙, which in 

our case could be the threshold parameters 𝜏 or the interaction parameters 𝛩; and the function to 

be maximized, which could be the log (pseudo) likelihood function 𝑓(𝜙). 

The Newton-Raphson algorithm updates the parameters as follows: 

𝜙𝑘+1 = 𝜙𝑘 +ℋ(𝑓(𝜙𝑘))
−1
∇𝑓(𝜙𝑘), 

Here ℋ(𝑓(𝜙𝑘)) denotes the Hessian matrix, the matrix containing all partial second order deriva-

tives of 𝑓(𝜙), evaluated in 𝜙𝑘. ∇𝑓(𝜙𝑘) is the gradient of 𝑓(𝜙), the vector containing the partial first-

order derivatives of 𝑓(𝜙), evaluated in 𝜙𝑘. 

The algorithm stops when a convergence criterion is satisfied, and we use: 

𝜙𝑘+1 − 𝜙𝑘 < 𝜖. 

ML Derivatives 

For ML optimization, we used the R package psychonetrics. This package uses a (quasi) Newton 

optimization algorithm as well, but we did not implement it ourselves. However, we still computed 

the derivatives, and in particular the second-order partial derivatives, to compute the Hessian, 

which we need for the estimated variances. For computational ease, we use matrix derivation for 

the maximum likelihood. For this, we can rewrite the maximum likelihood function in vector nota-

tion. For this, we first define the vector of sufficient statistics for the Ising model as 

𝑠(𝑥) = (𝑥1, 2 𝑥1𝑥2, . . , 𝑥2, 2 𝑥2𝑥3, . . ,2 𝑥𝑝−1𝑥𝑝, 𝑥𝑝)𝑇 

where 𝑥𝑖 is the data for variable 𝑖. We rewrite parameters 𝜏 and 𝛩 in a single parameter vector as 

𝜓 = (𝜏1, 𝜃12, . . , 𝜏2, 𝜃23, . . , 𝜃𝑝−1𝑝, 𝜏𝑝)𝑇 . 

The log-likelihood function can be written as 

ℒ(𝜓) =∑𝑠

𝑛

𝑣=1

(𝑥𝑣)
𝑇𝜓 − 𝑛 ⋅ log(∑ exp

𝑥∈𝒳

{𝑠(𝑥)𝑇𝜓}), 

with 𝑥𝑣 the vector of observed variables for observation (person) 𝑣. 𝑠(𝑥𝑣) denotes the vector of suffi-

cient statistics for observation 𝑣. Using this definition, we can easily obtain the first and second-
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order derivatives with respect to the model parameters. 

 

First Order Derivatives 

The gradient ∇ℒ(𝜓) contains the partial first-order derivatives of the log-likelihood function. Using 

simple derivation, we obtain 

∇ℒ(𝜓) =∑𝑠

𝑛

𝑣=1

(𝑥𝑣) −
𝑛

Z
∑𝑠

𝑥∈𝑋

(𝑥) exp{𝑠(𝑥)𝑇𝜓} =∑𝑠

𝑛

𝑣=1

(𝑥𝑣) − 𝑛 ⋅ 𝔼[𝑠(𝑥)]. 

For a single parameter, the derivatives are computed as 

∂ℒ

∂𝜏𝑖
=∑𝑥𝑣𝑖

𝑛

𝑣=1

− 𝑛 ⋅ 𝔼[𝑥𝑖] = ∑𝑥𝑣𝑖

𝑛

𝑣=1

−
𝑛

Z
⋅ ∑ 𝑥𝑖
𝑥∈𝒳

exp{𝑠(𝑥)𝑇𝜓}, 

for threshold parameter 𝜏𝑖 , 𝑖 ∈ 1, . . . , 𝑝, and 

∂ℒ

∂𝜃𝑖𝑗
= 2∑𝑥𝑣𝑖

𝑛

𝑣=1

𝑥𝑣𝑗 − 2𝑛 ⋅ 𝔼[𝑥𝑖𝑥𝑗] = 2∑𝑥𝑣𝑖

𝑛

𝑣=1

𝑥𝑣𝑗 −
2𝑛

Z
∑𝑥𝑖
𝑥∈𝑋

𝑥𝑗exp{𝑠(𝑥)𝑇𝜓}, 

for interaction parameter 𝜃𝑖𝑗 , 𝑖 ∈ {1, . . . , 𝑝 − 1}, and 𝑗 ∈ {𝑖 + 1, . . . , 𝑝}. 

 

Second Order Derivatives 

The Hessian is the matrix that contains all second-order partial derivatives. We derive it by taking 

the partial derivatives of the gradient. 

ℋ = −𝑛(𝔼[𝑠(𝑥)𝑠(𝑥)𝑇] − 𝔼[𝑠(𝑥)]𝔼[𝑠(𝑥)]𝑇), 

with the following terms: 

𝔼(𝑠(𝑥)𝑠(𝑥)𝑇) =
1

Z
∑𝑠

𝑥∈𝒳

(𝑥)𝑠(𝑥)𝑇  exp(𝑠(𝑥)𝑇𝜓), 

and 

𝔼[𝑠(𝑥)] =
1

Z
∑𝑠

𝑥∈𝒳

(𝑥) exp(𝑠(𝑥)𝑇𝜓). 

The second-order partial derivatives, i.e., the elements of the Hessian, are given by 

∂2ℒ

∂𝜏𝑖 ∂𝜏𝑗
= −

𝑛

Z
(∑ 𝑥𝑖
𝑥∈𝒳

𝑥𝑗exp{𝑠(𝑥)𝑇𝜓} −
1

Z
(∑ 𝑥𝑖
𝑥∈𝒳

exp{𝑠(𝑥)𝑇𝜓})(∑ 𝑥𝑗
𝑥∈𝒳

exp{𝑠(𝑥)𝑇𝜓}])), 

for the second-order derivatives of 𝜏𝑖 and 𝜏𝑗 , 𝑖, 𝑗 = 1, . . . , 𝑝, and 
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∂2ℒ

∂𝜏𝑖 ∂𝜃𝑗𝑘
= −

2𝑛

Z
(∑ 𝑥𝑖
𝑥∈𝒳

𝑥𝑗𝑥𝑘exp{𝑠(𝑥)𝑇𝜓} −
1

Z
(∑ 𝑥𝑖
𝑥∈𝒳

exp{𝑠(𝑥)𝑇𝜓})(∑ 𝑥𝑗
𝑥∈𝒳

𝑥𝑘exp{𝑠(𝑥)𝑇𝜓}])), 

for threshold parameter 𝜏𝑖 , 𝑖 = 1, . . . , 𝑝, and interaction parameter 𝜃𝑖𝑗 , 𝑖 = 1, . . . , 𝑝 − 1, and 𝑗 in 𝑖 + 1, . . . , 𝑝. 

∂2ℒ

∂𝜃𝑖𝑗 ∂𝜃𝑘𝑙
= −

4𝑛

Z
(∑ 𝑥𝑖
𝑥∈𝒳

𝑥𝑗𝑥𝑘𝑥𝑙exp{𝑠(𝑥)𝑇𝜓} −
1

Z
(∑ 𝑥𝑖
𝑥∈𝒳

𝑥𝑗exp{𝑠(𝑥)𝑇𝜓})(∑ 𝑥𝑘
𝑥∈𝒳

𝑥𝑙exp{𝑠(𝑥)𝑇𝜓}])) 

for interaction parameters 𝜃𝑖𝑗 , 𝑖 = 1, . . . , 𝑝 − 1, 𝑗 in 𝑖 + 1, . . . , 𝑝 and 𝜃𝑘𝑙 , 𝑘 = 1, . . . , 𝑝 − 1, 𝑙 in 𝑖 + 1, . . . , 𝑝. 

 

for interaction parameters  

 

 

JPL Derivatives 

In our JPL estimation, we use the Newton-Raphson algorithm. For this, we need the gradient, i.e., 

the first-order partial derivatives, and the Hessian, i.e., the second-order partial derivatives of the 

(log) joint pseudolikelihood function. The Hessian is also used for variance estimation. In the follow-

ing, we define the probability that variable 𝑖 for observation 𝑣 equals one as 

𝑝𝑣𝑖 =
exp{𝜏𝑖 + ∑ 𝜃𝑖𝑗𝑗≠𝑖 𝑥𝑣𝑗}

1 + exp{𝜏𝑖 + ∑ 𝜃𝑖𝑗𝑗≠𝑖 𝑥𝑣𝑗}
. 

 

First Order Derivatives 

For the JPL first-order derivatives, we distinguish between threshold parameters and interaction 

parameters. We construct the gradient as 

∇ℒ̃ = (
∂ℒ̃

∂𝜏1
. .

∂ℒ̃

∂𝜏𝑝

∂ℒ̃

∂𝜃12

∂ℒ̃

∂𝜃13
. .

∂ℒ̃

∂𝜃1𝑝

∂ℒ̃

∂𝜃23
. . . .

∂ℒ̃

∂𝜃𝑝−1𝑝
)

𝑇

, 

where the first 𝑝 elements are the partial derivatives with respect to the threshold parameters, and 

the last 𝑝
(𝑝−1)

2
 elements are the partial derivatives with respect to the interaction parameters. The 

derivatives are computed as 

∂ℒ̃

∂𝜏𝑖
=∑(𝑥𝑣𝑖 − 𝑝𝑣𝑖)

𝑛

𝑣=1

, 

for the threshold parameters, and 

∂ℒ̃

∂𝜃𝑖𝑗
=∑(𝑥𝑣𝑖𝑥𝑣𝑗 − 𝑝𝑣𝑖𝑥𝑣𝑗 − 𝑝𝑣𝑗𝑥𝑣𝑖)

𝑛

𝑣=1

, 

for the interaction parameters. 
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Second Order Derivatives 

The second-order partial derivatives together form the Hessian. For the JPL, we divide the Hessian 

into blocks as 

ℋ = (
ℋ𝜏 ℋ𝜏,𝛩

ℋ𝜏,𝛩
𝑇 ℋ𝛩 ,

), 

with ℋ𝜏  the block containing all the second-order partial derivatives with respect to the threshold 

parameters, ℋ𝛩 the block containing the partial derivatives with respect to the interaction param-

eters, and ℋ𝜏,𝛩 the block containing the cross second-order partial derivatives. 

The first block, ℋ𝜏 , is computed as 

ℋ𝜏 =

(

 
 
 

∂2ℒ̃

∂𝜏1
2 . .

∂2ℒ̃

∂𝜏1 ∂𝜏𝑝
: :

∂2ℒ̃

∂𝜏1 ∂𝜏𝑝

∂2ℒ̃

∂𝜏𝑝
2
,
)

 
 
 
, 

which is a diagonal matrix with elements 

∂2ℒ

∂𝜏𝑖 ∂𝜏𝑗
= {

−∑𝑝𝑣𝑖

𝑛

𝑣=1

(1 − 𝑝𝑣𝑖)  if 𝑖 = 𝑗

0  otherwise.

. 

The second block, ℋ𝛩 , contains the second-order partial derivatives with respect to the interaction 

parameters. It is computed as 

ℋ𝛩 =

(

 
 
 

∂2ℒ̃

∂𝜃12
2 . .

∂2ℒ̃

∂𝜃12𝜃𝑝−1𝑝
: :
∂2ℒ̃

∂𝜃12𝜃𝑝−1𝑝
. .

∂2ℒ̃

∂𝜃𝑝−1𝑝
2

)

 
 
 
, 

with individual elements 

∂2ℒ

∂𝜃𝑖𝑗 ∂𝜃𝑟𝑘
=

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 −∑(𝑥𝑣𝑖𝑝𝑣𝑗(1 − 𝑝𝑣𝑗) + 𝑥𝑣𝑗𝑝𝑣𝑖(1 − 𝑝𝑣𝑖))

𝑛

𝑣=1

  if 𝑖 = 𝑟 and 𝑗 = 𝑘

−∑𝑥𝑣𝑗

𝑛

𝑣=1

𝑥𝑣𝑘𝑝𝑣𝑖(1 − 𝑝𝑣𝑖)  if 𝑖 = 𝑟 and 𝑗 ≠ 𝑘

−∑𝑥𝑣𝑖

𝑛

𝑣=1

𝑥𝑣𝑟𝑝𝑣𝑗(1 − 𝑝𝑣𝑗)  if 𝑖 ≠ 𝑗 and 𝑗 = 𝑘

−∑𝑥𝑣𝑖

𝑛

𝑣=1

𝑥𝑣𝑘𝑝𝑣𝑗(1 − 𝑝𝑣𝑗)  if 𝑗 = 𝑟 and 𝑖 ≠ 𝑘

−∑𝑥𝑣𝑗

𝑛

𝑣=1

𝑥𝑣𝑟𝑝𝑣𝑖(1 − 𝑝𝑣𝑖)  if 𝑖 = 𝑘 and 𝑗 ≠ 𝑟

0      otherwise.

. 
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The cross-Hessian ℋ𝜏,𝛩 is computed as 

ℋ𝜏,𝛩 =

(

 
 
 

∂2ℒ̃

∂𝜏1 ∂𝜃12
. .

∂2ℒ̃

∂𝜏1 ∂𝜃𝑝−1𝑝
: :
∂2ℒ̃

∂𝜏𝑝 ∂𝜃12
. .

∂2ℒ̃

∂𝜏𝑝 ∂𝜃𝑝−1𝑝)

 
 
 
, 

with elements 

∂2ℒ

∂𝜏𝑖 ∂𝜃𝑗𝑘
=

{
 
 
 

 
 
 ∑𝑥𝑣𝑘

𝑛

𝑣=1

𝑝𝑣𝑖(1 − 𝑝𝑣𝑖)  if 𝑖 = 𝑗

∑𝑥𝑣𝑗

𝑛

𝑣=1

𝑝𝑣𝑖(1 − 𝑝𝑣𝑖)  if 𝑖 = 𝑘

0          otherwise.

. 
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APPENDIX B: Additional Results 
 

 

Tables of Results 

Tables B1 - B3 show all results for the complete graph, the random graph, and the small world, 

respectively. We show the squared bias and variance estimates of the three estimators. The MJPLE 

has two variance estimates: The first is derived from the observed Fisher information matrix, and 

the second estimate is the sandwich correction. The results are shown for all network (𝑝) and sam-

ple sizes (𝑛). Variances greater than 100 are replaced by ``*.** ’’. 
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Table B1 

The squared bias and estimated variances of the three estimators over variations in network (p) 
and sample size (n) for data generated from a complete graph. The left half of the table shows the 
results for the threshold parameters 𝜏, the right half for the interaction parameters 𝛩. 
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Table B2 

The squared bias and estimated variances of the three estimators over variations in network (p) 
and sample size (n) for data generated from a small world graph. The left half of the table shows 
the results for the threshold parameters 𝜏, the right half for the interaction parameters 𝛩. 
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Table B3 

The squared bias and estimated variances of the three estimators over variations in network (p) 
and sample size (n) for data generated from a random graph. The left half of the table shows the 
results for the threshold parameters 𝜏, the right half for the interaction parameters 𝛩. 
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The Bias of MPLEs in Relation to the Bias of MLEs 

Figures B1 - B3 show the relative squared bias of the MJPLEs and the MDPLEs, divided by the 

squared bias of the MLEs. We take the log to emphasize the differences. The figures illustrate the 

fact that for large samples the bias of both pseudolikelihood estimates goes to the bias of the MLEs. 

For small samples, the MDPLEs have much larger bias than the MJPLEs, relative to the MLEs. 

 

Figure B1 

Scatter plot of the logarithm of the relative difference of the squared bias of the MJPLEs and the 
MDPLEs, both divided by the squared bias of the MLEs, with the sample size (𝑛) on the x-axis and 
the log of the relative squared bias on the y-axis. The different values of graph size (𝑝) are given on 
the panels. Results are based on a complete graph. 
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Figure B2 

Scatter plot of the logarithm of the relative difference of the squared bias of the MJPLEs and the 
MDPLEs, both divided by the squared bias of the MLEs, with the sample size (𝑛) on the x-axis and 
the log of the relative squared bias on the y-axis. The different values of graph size (𝑝) are given on 
the panels. Results are based on a small world. 
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Figure B3 

Scatter plot of the logarithm of the relative difference of the squared bias of the MJPLEs and the 
MDPLEs, both divided by the squared bias of the MLEs, with the sample size (𝑛) on the x-axis and 
the log of the relative squared bias on the y-axis. The different values of graph size (𝑝) are given on 
the panels. Results are based on a random graph. 
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