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Social influence processes can induce desired or undesired behavior change in individual 

members of a group. Empirical modeling of group processes and the design of network-

based interventions meant to promote desired behavior change is somewhat limited be-

cause the models often assume that the social influence is assimilative only and that the net-

works are not fully connected. We introduce a Boolean network method that addresses these 

two limitations. In line with dynamical systems principles, temporal changes in group mem-

bers’ behavior are modeled as a Boolean network that also allows for application of control 

theory design of group management strategies that might direct the groups towards desired 

behavior. To illustrate the utility of the method for psychology, we apply the Boolean network 

method to empirical data of individuals’ self-disclosure behavior in multi-week therapy 

groups (N = 135, 18 groups, T = 10 ∼ 16 weeks). Empirical results provide description of each 

group member’s pattern of self-disclosure and social influence and identification of group-

specific network control strategies that would elicit self-disclosure from the majority of the 

group. Of the 18 group models, 16 included both assimilative and repulsive social influence. 

Useful control strategies were not needed for 10 already well-functioning groups, were iden-

tified for 6 groups, and were not available for 2 groups. The findings illustrate the utility of the 

Boolean network method for modeling the simultaneous existence of assimilative and repul-

sive social influence processes in small groups, and developing strategies that may direct 

groups toward desired states without manipulating social ties. 
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1. INTRODUCTION 

Individuals often modify their behavior accord-

ing to their observation of how other individu-

als in their social circle behave. Individuals may 

choose to conform to other’s behavior because 

they feel safer mimicking their social peers’ be-

haviors (e.g., conformity, Asch, 1956; group 

norm, Festinger et al., 1950); or they may choose 

to act differently from their peers because they 

disagree with their peers’ behavior (Rosen-

baum, 1986). Some individuals might be very 

consistent in their behavior and, although not 

changing their own behavior, might still influ-

ence their peers’ behavior (Moscovici & Zaval-

loni, 1969). Because social influence facilitates 

individuals’ behavior change in social group 

settings, the behavior changes among the in-

dividuals due to social influence can be con-

ceptualized as a group process. The outcome 

of the group process of behavior change are of-

ten the emergence of roles, group structures, 

and group norms (Arrow, 2010; Nowak et al., 

1990). 

Theorists seeking to understand behavior 

change desire methods that can model social 

influence, and practitioners seeking to induce 

behavior change desire methods that can 

manage social influence. In this paper we intro-

duce and forward a Boolean network method 

(Kauffman, 1969, 1993) that can estimate the 

presence of social influence and how it 

changes behavior within a group, and provide 

strategies for network management that can 

promote desired behavior or prevent unde-

sired behavior. Using empirical data from a lon-

gitudinal study of self-disclosing behavior in 

therapy groups on college campus, we demon-

strate how the Boolean network method can 

be applied to longitudinal behavioral data to 

infer social influence and to manage a group 

toward a desired goal – that the majority of 

group members will self-disclose. 

  

 

1.1 Social Influence and Behavior Change in 
Social Groups 

Theories of behavior change suggest individu-

als modify their behaviors according to the be-

haviors of their peers. There are mainly two dif-

ferent types of social influence regarding be-

havior change – assimilative and repulsive so-

cial influence (Flache et al., 2017; Stadtfeld et al., 

2020). When people are under the assimilative 

social influence of their peers, they tend to 

modify their behavior to be more similar to their 

peers’ behavior. There are several possible 

mechanisms of assimilative social influence. 

The integrative theory of planned behavior 

(Yzer, 2010) suggests that perceived social 

norms (and social pressures to perform specific 

behaviors) motivate behavior change. Similarly, 

social learning theory suggests individuals imi-

tate others’ behaviors through observation 

learning and can do so even without direct re-

inforcement (Bandura, 1963), and when there is 

uncertainty about the consequences 

(Bikhchandani et al., 1992). In contrast, when 

people are under the repulsive social influence 

of their social peers, they tend to modify their 

behavior to be different from their peers’ be-

havior. There are several mechanisms for repul-

sive social influence. First, repulsive social influ-

ence could also be social learning when a spe-

cific behavior is associated with subsequent 

punishment (Bandura, 1963, 1977). Second, re-

pulsive social influence could follow from nega-

tive social ties, which refer to social ties that 

carry negative connotations between two per-

sons, such as dislike (Harrigan et al., 2020; 

Veenstra et al., 2013). For example, if person A 

dislikes person B’s behavior, then person A’s be-

havior is more likely to move against person B’s 

behavior. Third, repulsive social influence may 

reflect dominance, particularly in groups that 

have limited resources (Sade & Dow, 2013). Here, 

group members modify their behaviors – often 

those related to the occupation of resources – 

when in the presence of a more dominant peer. 

For example, a less dominated group member 
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may give up the resources voluntarily to a more 

dominant peer; the more dominant member 

can also actively fight and prevent the less 

dominant member from occupying resources, 

such as food (Senior et al., 2016), or social status 

(Martin, 2009). Quantitatively, the behavior of 

the less dominant member moves in the oppo-

site direction of the behavior of the more dom-

inant member, for instance, if the more domi-

nant member occupies resources, then the less 

dominant member will not occupy resources. 

Although many theories suggest that there are 

both assimilative and repulsive social influ-

ences, the methods used to model social influ-

ence on behavior change often assume that 

social influence is only assimilative. Prior em-

pirical studies often examine the statistical re-

lation between the likelihood of adopting a be-

havior and the number of peers that already 

adopted that behavior (Shameli et al., 2017; 

State & Adamic, 2015), positing, as per the 

threshold theory (Granovetter, 1978), the likeli-

hood of adopting a novel behavior increases 

because the number of peers who adopted the 

novel behavior increases. This modeling ap-

proach assumes each dyad has assimilative so-

cial influence, so the effect of social influence 

on behavior from each peer can be summed 

up to measure the total social influence. An-

other modeling technique, often adopted to 

study the social influence on behavior change, 

is Simulation Investigation of Empirical Net-

work Analysis (Snijders, 2017). Here also, the 

empirical applications focus heavily on the as-

similative social influence in its empirical appli-

cations (Veenstra et al., 2013) through examina-

tion of the average similarity effect, total simi-

larity effect, and average alter effect. In con-

trast, agent-based modeling (ABM) is a gener-

ative approach (Epstein, 1999) used to demon-

strate the impact of social influence on behav-

ior change, and it does not constrain the social 

influence to be only assimilative. Here, the sys-

tem is modeled as multiple agents who inter-

act with other agents according to a set of rules 

that can be assimilative or repulsive (e.g., 

copying other’s behavior or choosing the oppo-

site behavior). Simulation is used to iteratively 

compute the changes in group process as 

agents update their behaviors based on the set 

of rules. Hence, ABM is often used to simulate 

and visualize dynamical systems to inform pub-

lic health policies, but it has rarely been used to 

fit empirically observed behavior data (Tracy et 

al., 2018). 

There is no theoretical reason to assume that 

only assimilative social influence exists in a so-

cial group; the lack of empirical studies focused 

on both assimilative and repulsive social influ-

ence might be due to a lack of available meth-

ods. The dynamical system method can fill this 

gap by estimating the dyad-level social influ-

ence based on the dyad’s social time series, 

without assuming the dyad-level social influ-

ence is uniform (Arrow, 2010). The dynamical 

system method is a mathematical model for a 

system’s dynamic evolution, which is typically 

formulated in terms of linear or nonlinear ordi-

nary differential equations on a state-space 

(Kutz et al., 2016). In a dynamical system, each 

group member’s behavior is modeled as a set 

of temporal relations where the behavior at the 

current time is an outcome of their own and the 

other group members’ behavior at previous 

time point(s). Social influence can then be in-

ferred from the temporal relations between 

each dyad in the group. For instance, when per-

son A’s behavior at time t has a temporal rela-

tion with person B’s behavior at time t + 1, this 

suggests that person A’s behavior influences 

person B’s behavior. Depending on the direc-

tion of the temporal relation, we can infer 

whether it is an assimilative or repulsive social 

influence. For instance, when person A’s behav-

ior at t has a positive temporal relation with per-

son B’s behavior at t + 1, this suggests that per-

son A’s behavior has an assimilative influence 

on person B’s behavior. If person B’s behavior at 

t has a negative temporal relation with person 

C’s behavior at t + 1, person B’s behavior has a 

repulsive influence on person C’s behavior. As 

such, dynamical system models can 
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accommodate simulateneous manifestation of 

both assimilative and repulsive social influ-

ences within the same group. More complex 

dynamical system formulations might further 

allow for longer time lags or processes that 

evolved in continuous-time (Antonioni et al., 

2019; van Montfort et al., 2018). In this paper, we 

forward a dynamical system approach using a 

Boolean network method that specifically 

models the dynamical evolution of the system 

from time point t to t + 1 using Boolean func-

tions (AND, OR, NOT). 

1.2 Managing the Group Process of Behavior 
Change 

Because individuals are under social influence 

and likely to modify their behavior due to other 

group members’ behavior, the process of be-

havior change due to social influence in the so-

cial group context can be conceptualized as a 

group process of behavior change. Then there 

is potential to manage the group process, so 

that the majority of the group will adopt a de-

sired behavior or as many group members as 

possible will. 

Previous literature suggests managing group 

process can utilize social influence from the 

most central nodes. Acknowledging that there 

are other definitions of node centrality (Free-

man et al., 1991; M. Newman, 2010) and much 

ongoing research on how centrality is related 

to group dynamics, degree centrality - e.g., in-

dividuals who receive the most friend nomina-

tions from others in the network – might be lev-

eraged to prevent undesirable behavior (e.g., 

aggression) from being spread via the social 

network (Borek et al., 2019; Osgood et al., 2013). 

This prior work suggests that one potential 

group management strategy is to intervene on 

the peer selection process, specifically to en-

courage group members to affiliate with those 

group members who show desired behavior 

(e.g., no substance use) and discourage affilia-

tion with those who show undesired behavior 

(e.g., substance use). 

This group management strategy makes two 

important assumptions. The first assumption is 

that social influence among group members is 
only assimilative in a mono-layer social network 

with only one channel of social interactions. In 

multiplex networks, some channels might sup-

port assimilative social influence while others 

support repulsive social influence (Kivelä et al., 

2014; Wasserman & Faust, 1994). When this as-

sumption is true, those who are more central in 

the social network are thought to be in a posi-

tion to influence more people in the group. So, 

positioning group members with desired be-

havior as the central nodes in the network 

should increase the number of group members 

that adopt desired behavior. Conversely, posi-

tioning group members with undesired behav-

ior as fewer central nodes will allow fewer peo-

ple to be influenced by them and subsequently 

will decrease the number of group members 

that adopt undesired behavior. The second im-

portant assumption underlying a centrality-

based group management strategy is that the 
network cannot be a fully connected network, 

where every group member has a social tie with 

every other group member in the network. 

Only when a group is not fully connected will it 

be possible to manage the friend nomination 

so that they allow some group members to 

have more friend nominations than others. This 

assumption is valid for large networks because 

it is unrealistic that everyone would know eve-

ryone in a large social networks (e.g., schools, 

corporations, the internet). But the assumption 

may be invalid in small groups (e.g., therapy 

groups, sports teams, coauthor groups), be-

cause the small size of the group allows group 

members to share a social tie with every other 

group member. 

When at least one of the two above assump-

tions is violated, we need a more flexible group 

management method. Once we can model the 

group process using dynamical system meth-

ods as previously introduced to relax the first 

assumption, we can also design network man-

agement strategies using control theory that is 

unconstrained by the second assumption. 
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Control theory (or control system design), a 

subfield of mathematics and engineering, fo-

cuses on moving dynamic systems toward de-

sired goals (Lewis et al., 2012; Liu & Barabasi, 

2016; Molenaar & Nesselroade, 2015). For exam-

ple, engineers and mathematicians have de-

veloped automated systems to direct planes to 

follow a designated trajectory and land at a 

designated lane by adjusting velocity and di-

rection in real-time to accommodate ongoing 

changes in the environment (e.g., wind). Simi-

larly, a variety of Boolean network control 

methods have been developed to determine 

the specific actions that will influence the be-

havior of the Boolean network so that it follows 

a desired trajectory or settles into a desired 

state (Campbell & Albert, 2019; Murrugarra et 

al., 2016; Shmulevich & Dougherty, 2010). In the 

context of group management, control theory 

methods focus on changing the behavior of 

specific group members instead of changing 

the social ties, which is not constrained by the 

second assumption about social network to-

pology. In this paper, we will apply the Boolean 

network method to model the group process, 

and then use the network control method 

based on the Boolean network method to 

identify specific ways to manage group pro-

cesses. 

1.3 Boolean Network 

The Boolean network method provides a real-

istic solution for both modeling and managing 

group processes for two reasons: (1) the Bool-

ean network method does not impose the as-

sumption that social influence is only assimila-

tive and allows both assimilative and repulsive 

social influence to be modeled for the same 

group, and (2) the Boolean network method 

can provide group management strategies, 

even for fully connected networks, hence it can 

be used to design network management strat-

egies (also called “network control”, Campbell 

& Albert, 2019; Murrugarra et al., 2016; Shmule-

vich & Dougherty, 2010), in accordance with the 

dynamics of social influence and without rely-

ing on manipulating social ties. 

Table 1 

Table of input variable(s) and the outcome of 
AND, OR, and NOT rule 

 

1.3.1 Background  

The Boolean network (BN) model was originally 

introduced by Kauffman (Kauffman, 1969, 1993). 

In brief, a Boolean network G(X(t), B) is defined 

by a set of nodes X(t) = x1(t), x2(t), . . . , xn(t), where 

xi is the ith node, and a set of Boolean functions 

B = f1, f2, . . . , fn, where each Boolean function fi(xi1, 
xi2, . . . , xik) with K specific input nodes for node 

xi determines the value of xi at time t + 1. In this 

paper, the nodes represent a group member’s 

behavior variable which is binary (1=ON, 0=OFF), 

for instance, self-disclosure behavior in a group 

setting. The Boolean functions represent the 

temporal dynamics between group members, 

i.e., how the group members’ behavior (nodes) 

influences each other’s behavior over time. 

The Boolean functions are written using the 

Boolean operators: AND ∧, OR ∨, NOT 𝑥. The 

AND (∧) operator is defined as all input variables 

 

x y x ∧y 
 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
 

 
 

x y x ∨y 
 

0 0 0 

0 1 1 

1 0 1 

1 1 1 
 

 
 

x x 
 

0 1 

1 0 
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have to be ON to turn the outcome ON; the OR 

(∨) operator is defined as any input variables 

being ON can turn the outcome ON; the NOT 

(x) operator simply takes the opposite state of 

the input variable. Table 1 shows how these 

rules produce different outcome based on the 

input of two variables. 

1.3.2 Modeling Assimilative and Repulsive 
Influence Simultaneously 

To give an intuitive illustration of how the Bool-

ean network method can be used to describe 

groups where assimilative and repulsive social 

influence operates simultaneously, we use a 

simple three-person network. Member 1, mem-

ber 2, and member 3’s behaviors at multiple oc-

casions are represented as x1, x2, and x3, respec-

tively. The observed time-series of each per-

son’s behavior x1, x2, and x3 are shown in Figure 

1a, where the states of x1, x2, and x3 are ordered 

by time-steps t1, t2, t3. From this observed binary 

time series, we can infer the Boolean functions 

that have assimilative and repulsive social in-

fluence in the same group as follows: 

x 1(t + 1) = x3(t)   (1) 

x2(t + 1) = x1(t)   (2) 

x3(t + 1) = x3(t)   (3) 

(the details of how rules are inferred will be in-

troduced in the Data Analysis section). 

1.  x1(t + 1) = x3(t) indicates repulsive social influ-

ence from person x3 to person x1: when x3 is OFF 

at time t, x1 will turn ON at time t + 1; when x3 is 

ON at time t, x1 will turn OFF at time t + 1. This 

can also be explained by dominance, member 

3 dominates member 1: whenever member 3’s 

self-disclosure is ON at time t, member 1’s self-

disclosure behavior turns OFF at time t + 1; 

when member 3’s self-disclosure is OFF at time 

t, member 1’s self-disclosure can be ON at time 

t + 1. 

2. x2(t + 1) = x1(t) indicates assimilative social in-

fluence from member 1 to member 2: when x1 is 

ON at time t, x2 will turn ON at time t + 1; when 

x1 is OFF at time t, x2 can turn OFF at time t + 1. 

3. x3(t + 1) = x3(t) indicates member 3’s behavior 

depends on him/herself: when x3 is ON at time 

t, x3 will continue to be ON at time t + 1; when x3 

is OFF at time t, x3 will continue to be OFF at 

time t + 1.  

The Boolean functions in Equations 1 to 3 are 

used to construct a Boolean network, a graph of 

which is shown in Figure 1b. The first function 

“x1(t + 1) = x3(t)” is expressed by a red edge from 

x3 to x1 representing the NOT effect of x3(t) on x1(t 
+ 1). The second function “x2(t + 1) = x1(t)” is indi-

cated by a green edge from x1 to x2 representing 

x2(t + 1) depends on x1(t). The third function “x3(t 
+ 1) = x3(t)” is indicated a green edge pointing 

from x3 back to itself – a self-loop. In sum, this 

example illustrates that a Boolean network 

model can have both assimilative and repulsive 

social influence in the same group. 

1.3.3 Designing Network Control Without 
Manipulating Social Ties 

Methodologically, network control focuses on 

modifying the state transition graph that is de-

rived from a Boolean network. Three pieces of 

information need to be identified: (1) which 

node needs to be perturbed, (2) which states to 

perturb the nodes to, and (3) what is the condi-

tion to perturb the node. These three pieces of 

information will be useful in diagnosing when 

and how to drive the system (social groups or 

social networks) into more desirable states. 

An attractor is the state (or a set of states) to-

ward which the dynamical system approaches 

over time (L. Newman, 2009). We can extract at-

tractors from the state transition graph using 

these Boolean functions (the details of how der-

ivation works will be introduced in the Data 

Analysis section). If we represent the state of x1, 

x2, and x3 as a tuple of the three variables (x1, x2, 

x3), e.g., (0,0,0) means all x1, x2, and x3 are OFF, we 

can express the state transitions as a graph, 

namely the state-transition graph, shown in 

Figure 1c. For the Boolean network in Figure 1c, 

where the arrows indicate the direction of 
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transitions, the state of the system will transi-

tion from (0,0,0) to (1,0,0), and then from (1,0,0) 

to (1,1,0). Once the system enters (1,1,0), it will be 

absorbed in this state and it will not transition 

to other states. This kind of state, where the sys-

tem stays, is an attractor. 

The Boolean network method utilizes the dif-

ferential desirability of attractors within the 

same dynamical system and designs network 

control strategies to move the dynamical sys-

tem from an undesirable attractor to a desira-

ble attractor, where desirability of each attrac-

tor is based on practical concerns (e.g., the 

common good). For instance, in our illustration, 

we define a desirable attractor as an attractor 

in which the majority of group members’ self-

disclosure are ON. For example, an attractor in 

which two group members’ self-disclosure is 

ON, e.g., (1,1,0), is deemed desirable; on the 

contrary, an attractor in which only one group 

member’s self-disclosure is ON, e.g., (0,0,1), is 

deemed undesirable. 

The control strategy can be derived based on 

the distance from an undesirable attractor to 

the basin of a desirable attractor (the details of 

this derivation will be introduced in the Data 

Analysis section). We can design network con-

trol based on the extracted attractors. One net-

work control strategy is to perturb x3 when only 

x3 is ON, as shown in Figure 1d, so that the sys-

tem will transition from (0,0,1) to (0,0,0) indi-

cated by a red arrow. From there, the system 

will go to (1,0,0), and eventually to (1,1,0), the de-

sirable attractor. This new state transition is also 

depicted in Figure 1d. In sum, this example illus-

trates that a Boolean network method can be 

used to design network management strate-

gies based on the dynamics of social influence 

Figure 1 

 

Note. Panel A is the observed binary time-series of x1, x2, x3 across time, Panel B is the Boolean network 

and Boolean functions inferred from the binary time-series in Panel A, and Panel C is the state transi-

tion graph derived from the Boolean functions in Panel B. Three-state tuple, e.g., (0,1,0) indicates the 

state of (x1, x2, x3). Panel D. Design of network management. One strategy as an example is to turn x3 

OFF when only x3 is ON, and this strategy will induce change in state transition graph highlighted by 

the red arrow. 
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without relying on manipulating social ties. 

1.4 The Present Study 

In the present study, we model social influence 

processes driving week-to-week disclosure be-

haviors of all members of a therapy group. In 

doing so, we construct Boolean networks that 

simultaneously estimate assimilative and re-

pulsive social influence from the Boolean func-

tions. The assimilative social influence is shown 

in a function form like xj(t + 1) = xi(t), and a repul-

sive social influence is shown in a function form 

like xj(t + 1) = xi(t). Then based on the Boolean 

network of each group, we can extract attrac-

tors for each group, and assign desirability to 

the attractors. When there are both desirable 

and undesirable attractors for the same group, 

we can search for a control strategy and iden-

tify specific group members that can move the 

group into a desirable attractor. The strength 

and novelty of this Boolean network method 

includes (a) simultaneously estimating assimi-

lative and repulsive social influence from dy-

namics of group members’ behavior data, and 

(b) providing group management strategy by 

applying network control on the dynamics of 

group members’ behavior data. 

2.  METHOD 

Data for our empirical inquiry are drawn from a 

longitudinal study of the dynamics of univer-

sity counseling center therapy groups that met 

weekly, and how the mental health and behav-

iors of individuals within those groups changed 

over 10 to 16 weeks. A comprehensive descrip-

tion of the larger study can be found in Molloy 

(2012). Details relevant to the present analysis 

are given below. 

2.1 Participants and Procedure 

Weekly data were collected from university 

students (undergraduate and graduate stu-

dents) receiving mental health services in the 

form of group therapy, from a university coun-

seling center. Data were only collected from re-

cruited groups in which all members (the two 

group leaders and all clients) had consented to 

participate, resulting in data from 135 individu-

als in 18 therapy groups (Mgroup size = 7.5, not in-

cluding the therapists). The participating 

groups met weekly for between 10 to 16 weeks. 

Of the 18 groups, 17 were “general process” 

groups (e.g., no specific disorder or topic; 9 for 

undergraduate students, 8 for graduate stu-

dents), and one was a substance abuse group 

(for both undergraduate and graduate stu-

dents). 

2.2 Measures 

Measures for the present study were drawn 

from the American Group Psychotherapy Asso-

ciation’s (AGPA) CORE-R Battery (Clinical Out-

come Results Standardized Measures, Revised; 

see (Burlingame et al., 2006; Strauss et al., 

2008): a manual of evidence-based instruments 

that serve as a standardized “toolbox” for clini-

cians to systematically monitor and evaluate 

groups and their members. Since the original 

measures were often not administered on a 

weekly basis, many of the items were re-

worded to be present-focused by adding, for 

example, the phrases “during today’s session” 

or “today.” 

2.2.1 Participants’ Weekly Self-Disclosure 

To demonstrate the Boolean network model-

ing approach, we use a self-disclosure item 

from the Group Evaluation Scale (GES; Hess, 

1996), a seven-item measure assessing the over-

all benefit that a client experienced during a 

given session. Traditional Likert-type response 

scales (e.g., 1 = ’strongly disagree’ to 7 = ’strongly 
agree’) were converted to "touch-point contin-

uum" (slider-type) response scales (0 to 100) 

with end-point anchors. The ease of self-disclo-

sure item is measured using the prompt "Dur-

ing today’s session, I was able to explain my 

problems to other members with:" and the 

end-point anchors were "great difficulty" and 

"great ease". To prepare the variable for analysis 

using the Boolean network method, the inter-

val-scale variable was binarized separately for 

each individual using their person-specific 

mean score across the repeated measures. 
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Specifically, responses above the person-mean 

were coded as = 1, and responses equal to or be-

low the person-mean were coded as = 0 (alter-

natively, the person-median could be used). 

Thus, for each person in a group, we obtained a 

binary time series that is interpreted as indicat-

ing whether or not that individual engaged in 

self-disclosure during each session (we con-

sider the measure of ease of self-disclosure an 

approximate measure of self-disclosure behav-

ior, for more detailed discussion can be found 

in Limitations and Outlooks). 

2.3 Data Analysis 

Though concepts of complexity and dynamical 

system were introduced to psychologists early 

on (Ashby, 1947) and these concepts are closely 

related to the Boolean network method 

(Metcalf & Kauffman, 2021), empirical use of the 

Boolean network method in the psychology lit-

erature is very rare. To cover the essential con-

cepts and methodological details that might 

enable readers gaining a solid understanding 

of the Boolean network method as a method 

for network modeling and network control, we 

synthesized the Boolean network method in-

troduced in system biology literature. 

The Boolean network method we introduce 

here has three major steps: (1) inference of 

Boolean functions and construction of a Bool-

ean network, (2) extraction of attractors based 

on the inferred dynamics and assignment of 

desirability for each attractor, and (3) design of 

network control to direct a group toward a de-

sired attractor and identify how the Boolean 

network needs to be updated. The tutorial 

code in R is available at https://osf.io/gxunk/. 

2.3.1 Data Pre-processing 

Missing data are imputed using R package im-

puteTS (Moritz & Bartz-Beielstein, 2017). The im-

putation method uses Kalman filter to main-

tain the characteristics of time series (e.g., time 

trend, oscillation), and the imputation is ap-

plied to every group member’s univariate time 

series first. Imputation requires a minimum of 

3 non-missing data points for each group 

member. Hence, we choose to remove the 

group member’s data when they have only two 

or fewer data points. 

At the level of group members, the number of 

missing data points is on average 3.23 (SD = 

2.68). If we divide the number of missed data 

points by the total number of weeks for group 

meetings, then the proportion of missing data 

is on average 0.34 (SD = 0.27). The number of re-

moved group members, those who had 2 or 

fewer data points, is 16 out of the 135 group 

members. 

2.3.2 Inference of Boolean Functions and 
Construction of Boolean Network 

The Boolean functions can be inferred from the 

observed time series of all the variables. Input 

variable refers to the variables that produce the 

outcome variable, similar to predictors. The 

number of input variables is usually denoted by 

k, and the size of the network is denoted by N, 

so the Boolean network with size N and with k 

input variables is sometimes called a NK Bool-

ean network. 

Algorithms have been developed to infer Bool-

ean functions (Akutsu et al., 2000; Lähdesmäki 

et al., 2003; Steinway et al., 2016). The goal of in-

ferring Boolean functions is to find the combi-

nation of input variables connected by the 

AND, OR, and NOT Boolean operators, that is 

the best fit of an outcome variable. The infer-

ence procedure utilized the matrix multiplica-

tion and fingerprint function (Akutsu et al., 

2000) to compare the time series of the out-

come variable and the time series of combina-

tions of different input variables. The fingerprint 

function is a procedure that maps an arbitrarily 

large data item (such as a long binary time-se-

ries string in the observed time-series) to a 

much shorter bit string, its fingerprint, that 

uniquely identifies the original data for all prac-

tical purposes (Broder, 1993). 

For network construction, each group mem-

ber’s self-disclosure data within their group 

were entered in the BoolNet R package (Müssel 

https://osf.io/gxunk/
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et al., 2010) to construct a group-specific Bool-

ean network. The R package will find the best 

fit for each variable – each member’s self-dis-

closure – at time t + 1 in the form of a Boolean 

function that uses the variables of the same 

group – group members’ self-disclosure – as in-

put variables at time t . All the Boolean func-

tions together comprise the Boolean network 

model of the given therapy group. The Boolean 

network is constructed by putting all the in-

ferred Boolean functions together. As a hypo-

thetical example, 1b shows how the three-node 

Boolean network introduced earlier is con-

structed. 

2.3.3 Selection of Number of Input Variable 
k 

In this paper, we select k = 1, meaning each 

node is only predicted by one other node. The 

main reason for selecting k = 1 is that due to the 

relatively short time series (10 ∼ 16 weeks), se-

lecting k = 1 can avoid overfitting the data. In 

addition, selecting k = 1 can also provide a 

straightforward interpretation of the group 

process – assimilative or repulsive – that 

matches more closely to the theory of social in-

fluence. From the set of possible functions, we 

identify the Boolean function that has the min-

imal error, in which error is defined as the sum 

of false positive predictions (type 1 error) and 

false negative predictions (type 2 error) 

(Lähdesmäki et al., 2003). Given differences in 

number of observations across groups, we will 

report the error rate (error/# of observations), in 

the Results section to ensure the error rate can 

be compared or aggregated across groups. 

We also want to note there could be multiple 

Boolean functions that have the best fit for one 

variable. Hence, there are multiple combina-

tions of Boolean functions within the group 

that have equal probability. Here, for the pur-

pose of brevity, we describe the subsequent 

analytical steps with one selected Boolean 

function. The choice of the Boolean function is 

the first inferred Boolean function out of all 

best-fit Boolean functions in the output of the 

R package BoolNet. To explore all possible 

Boolean functions, researchers can go through 

each possible combination of Boolean func-

tions within a group. In the Results section later, 

we also introduce the results of one set of se-

lected Boolean functions. 

2.3.4 Extraction of Attractors 

After the Boolean functions are inferred, the 

state transition graph can be constructed by an 

exhaustive search of all possible state transition 

sequences from each initial condition (each 

combination of node states). The attractors are 

identified by constructing the state transition 

graph and finding each absorbing state, which 

is a state that will transition to itself due to the 

dynamics. 

We will go through the same example of a 

three-node network to demonstrate this proce-

dure, using the Boolean network mentioned 

earlier in Figure 1 and Equation 1 to Equation 3. 

For the 3-node network, there are 2N = 23 = 8 

possible initial conditions: (0,0,0), (0,0,1), (0,1,0), 

(0,1,1), (1,0,0), (1,0,1), (1,1,0), (1,1,1). Using the Boolean 

functions, we can compute the state of the sys-

tem for the next time point, t = 1. For example, 

when the system starts with initial condition at 

t = 0 of (0,0,0), meaning x1 = 0, x2 = 0 , x3 = 0 at t = 

0, then x1(t = 1) = x3(t = 0) = 1, x2(t = 1) = x1(t = 0) = 0, 

x3(t = 1) = x3(t = 0) = 0. We then know (0,0,0) will 

transition to (1,0,0). Similarly, we can compute 

the next state when the system starts at one of 

the other seven states. We have put the initial 

state and state at the next moment in Table 2. 

The overall state transitions from Table 2 can be 

represented as a state transition graph. Shown 

in 1c, the states are shown as circles, and the ar-

rows indicate the direction of change between 

different states. Attractors are identified as the 

states where the state at t + 1 is identical to the 

state at t. One attractor (the seventh row in Ta-

ble 2, colored in light blue) is (1,1,0), having two 

nodes x1, x2 turned ON. The other attractor (the 

second row in Table 2, colored in yellow) is 

(0,0,1), having one node x3 turned ON. 
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Table 2 

Table of state transitions 

(x1, x2, x3) 

t t + 1 

(0,0,0) (1,0,0) 

(0,0,1) (0,0,1) 

(0,1,0) (1,0,0) 

(0,1,1) (0,0,1) 

(1,0,0) (1,1,0) 

(1,0,1) (0,1,1) 

(1,1,0) (1,1,0) 

(1,1,1) (0,1,1) 

 

It is worth mentioning that there are two types 

of attractors: the fixed-point attractor when the 

system stays in one state, and a complex at-

tractor (also called a limit cycle) when the sys-

tem cycles through a finite set of states. The 

limit cycle can be identified by analyzing the 

state transition graph; if there is a cycle of state 

transitions that returns to the starting state in 

the state transition graph, there is a limit cycle 

formed by that set of states. 

2.4 Design of Network Control 

For this paper, we aim to suggest a change to 

particular members’ behavior such that a ther-

apy group will not get stuck with only a few 

people self-disclosing all the time, but instead 

elicit more diverse participation in self-disclo-

sure. Generally speaking, self-disclosure is a de-

sirable behavior in therapy groups because it 

can strengthen the therapeutic process and 

group members’ self-evaluation can enhance 

their own healing and change (Farber, 2006). 

We consider a single-node perturbation to 

minimize the burden for group therapists, who 

are expected to execute the control strategy. 

According to network control methods 

(Campbell & Albert, 2019; Murrugarra et al., 2016; 

Shmulevich & Dougherty, 2010), we introduce 

how to identify three pieces of information in 

this section: (1) which node (i.e., person) needs 

to be perturbed, (2) which state to perturb node 

to, and (3) what is the condition to perturb the 

node. These three pieces of information will be 

useful in diagnosing when and how to drive the 

system into more desirable states for social 

groups. The procedure for identifying control 

strategy is as follows: 

1. Formulate the goal of network control. The 
goal is formulated in accordance with practi-
cal/substantive concern. For this paper, the 

goal is to promote the desired behavior (self-

disclosure), and the desirability of attractors is 

determined by the number of participants 

whose self-disclosure is ON at least once in the 

attractor. The desirability of an attractor is de-

termined by whether the majority of the group 

members have self-disclosure ON. Here, the 

method relies on the naturally occurring attrac-

tors based on the existing group dynamics, so 

we chose the desirable state as the majority’s 

self-disclosure ON if such attractor state is ap-

plicable. Ideally, it might be most desirable to 

have all group members self-disclose, but this 

kind of attractor is not guaranteed to occur in 

the existing group dynamics. 

2. Compute the Hamming distance from an 
undesirable attractor to the states in a desirable 
attractor basin. An attractor basin is defined as 

the set of states that will eventually go to a 

given attractor state. The attractor basin can be 

identified from the state transition graph; it is 

made up of all the states in this graph that are 

connected to the attractor by a state transition 

or a succession of state transitions. Because the 

system will eventually go to the attractor once 

the system is in any state belonging to the at-

tractor basin, we can consider what actions are 

necessary to move the system from an undesir-

able attractor state into the basin of a desirable 

attractor. Ideally, we would like to move the sys-

tem from an undesirable attractor state to the 
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closest state in the desirable attractor basin. 

The distance from an undesirable attractor 

state to each state in the desirable basin will be 

the number of nodes that need to be per-

turbed, thus shortest distance indicates fewest 

nodes to be perturbed. Formally, these dis-

tances are computed using Hamming dis-

tance (Hamming, 1950), which compares two 

binary strings of equal length and counts the 

number of bit positions in which the two bits 

are different. For example, the distance be-

tween state (0,0,1) and state (1,0,0) is 2 because 

two elements (x1 and x3) in the string are differ-

ent, and need to be changed to move the sys-

tem from one state to the other state. 

3. Formulation of control strategy. Once all of 

the Hamming distances are computed, we for-

mulate control strategies from those that have 

the shortest distance. The Hamming distance 

indicates the number of nodes that need to be 

perturbed. So, the shortest Hamming distance 

indicates a control strategy with minimal num-

ber of nodes perturbed; when the shortest 

Hamming distance is 1, then we obtain a single-

node perturbation, which is what we choose as 

the control strategy. The node to be perturbed 

is the node whose state differs between the un-

desirable attractor state and the state in the 

desirable attractor basin state. The undesirable 

attractor state is the condition to perturb the 

node, and the state in the desirable attractor 

basin state is the state in the node that should 

be perturbed to. 

An example is shown in Figure 1. A three-node 

Boolean network and its state transition graph 

are given in 1b and 1c. The state transition has 

one desirable attractor (1,1,0) in blue and one 

undesirable attractor (0,0,1) in orange, because 

the (1,1,0) has 2 group members’ self-disclosure 

ON, compared with (0,0,1). The goal of network 

control is to move the system out of the unde-

sirable attractor (0,0,1) and direct the system 

into the desirable attractor (1,1,0). 

We compute the Hamming distances between 

the undesirable attractor (0,0,1) and every state 

in the attractor basin that includes the desira-

ble attractor state (1,1,0). We then find the short-

est distance, which in this case is from (0,0,1) to 

(0,0,0), and develop a control strategy that 

would facilitate that move. 

Figure 1d shows the control strategy – turning 

node x3 OFF – that when invoked can move the 

system towards the desirable attractor. The 

node to perturb is node x3 because the undesir-

able attractor state (0,0,1) and the state in the 

desirable attractor basin that has the shortest 

Hamming distance (0,0,0), differing by the third 

node. The condition to perturb is when the sys-

tem is stuck in the undesirable attractor (0,0,1), 

the state to perturb x3 to is to turn x3 to 0 (OFF), 

then the system goes to (0,0,0), and the state 

transition is highlighted as a red arrow in Figure 

1d. From there, the system will then transition 

to (1,0,0), and then to the desirable attractor 

(1,1,0), highlighted by blue, where two group 

members will have the desirable behavior = ON. 

It is worth noting there could be multiple states 

that have a distance of 1 to the undesirable at-

tractor, indicating multiple control strategies. It 

is also possible that there is no state that has a 

distance of 1 to the undesirable attractor, indi-

cating that no single-node control strategy 

could be found. 

3. RESULTS 

We used the Boolean network method to de-

scribe the group process of each of the 18 ther-

apy groups’ self-disclosure and to design a con-

trol strategy that would move each group to-

ward a desirable outcome – where the majority 

of group members engage in self-disclosure. 

Results are reported in two parts. First, we go 

step-by-step through the results obtained for 

an exemplar group. Then, we summarize and 

identify patterns in the findings across all 18 

groups. 

3.1 Group-Specific Analysis: Identifying a 
Management Strategy 

In this section, we illustrate how the analyses 

proceeded for one exemplar group, Group 1 in 

Table 3. Group 1 consisted of 8 persons, x1 to x8, 
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who participated in group therapy for 8 weeks. 

The self-disclosure behavior of each member is 

shown in Figure 2a, where the colored blocks 

indicate the weeks that each individual self-

disclosed and the white spaces indicate the 

weeks they did not self-disclose. 

Inference of Boolean functions and construc-

tion of Boolean networks. The Boolean func-

tions inferred from this 8-dimensional binary 

time-series were, as also shown in Figure 2b,  

x1(t + 1) = x6(t)(err : 1)  (4) 

x2(t + 1) = x7(t)(err : 1)  (5) 

x3(t + 1) = x6(t)(err : 0)  (6) 

x4(t + 1) = x6(t)(err : 1)  (7) 

x5(t + 1) = x8(t)(err : 1)  (8) 

x6(t + 1) = x6(t)(err : 1)  (9) 

x7(t + 1) = x6(t)(err : 0)  (10) 

x8(t + 1) = x7(t)(err : 1)  (11) 

These functions indicate that the group pro-

cess included both assimilative and repulsive 

social influences. Specifically, Equation 10 indi-

cates an assimilative social influence from x6 to 

x7, in that x7 always does what x6 did the previ-

ous week. In contrast, Equation 4 indicates a re-

pulsive social influence from x6 to x1, in that x1 

always does the opposite of what x6 did the pre-

vious week. Collected together, the eight Bool-

ean functions form the Boolean network for 

Group 1. Altogether the group process demon-

strates both assimilative and repulsive social 

influence co-exist in the same group. 

3.1.1 Extraction of Attractors 

Based on the group-specific Boolean network, 

we then computed how the system evolved 

from t to t + 1 (e.g., as in Table 2), which is shown 

graphically in Figure 2c. The state transition 

graph in Figure 2c is obtained in the same way 

as introduced in the “Extraction of Attractors” 

section, but each state is depicted using dots in 

Figure 2c, instead of circles with states in Figure 

1c, due to the lack of space. 

Attractors – the states that transition back to 

themselves – can be extracted. In our example 

group, two attractors are identified and each at-

tractor basin is highlighted by a different color. 

Attractor 1 (highlighted in blue with a loop) has 

five nodes (x1 to x5) with self-disclosure = ON. At-

tractor 2 (highlighted in green with a loop) has 

three nodes (x6 to x8) with self-disclosure ON. 

Based on the number of group members that 

have self-disclosure ON, Attractor 1 is desirable 

and Attractor 2 is undesirable. 

3.1.2 Design of Network Control 

Using the control strategy search algorithm de-

scribed above we identified one strategy that 

might be used to move the system from Attrac-

tor 2 to Attractor 1. Hamming distance was cal-

culated between the undesirable attractor to all 

states in the desirable attractor basin. Figure 2d 

shows there is one state that has the minimal 

Hamming distance – one. The node that differs 

from the undesirable attractor to the desirable 

attractor basin is node 6, or x6. These are shown 

in Figure 2d along with an indication of that the 

sixth group member x6 should be reminded to 

shorten the self-disclosure time so that others 

can self-disclose. The first row in the table indi-

cates that when the sixth group member self-

discloses (0 = OFF), the system will be moved 

from the state of (0,0,0,0,0,1,1,1) in Attractor 2 (3 

members ON) to a state (0,0,0,0,0,0,1,1) in the 

desirable attractor basin, and eventually to At-

tractor 1 (5 members ON). In sum, this strategy 

indicates by turning the sixth group member 

OFF, the network can be moved from Attractor 

2 to Attractor 1. 
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Figure 2 
Illustration of an eight-member group’s model results. 
 

Note. Panel A: Binary Time-Series of Self-Disclosure. Binary time-series of each group mem-

ber’s weekly self-disclosure behavior (colored bars indicate self-disclosure ON, white space 

self- disclosure OFF). Panel B: Inferred Boolean functions and Boolean Network. Inferred 

Boolean functions based on the time-series in Panel A. The Boolean network represent the 

Boolean functions as edges and variables as nodes. Panel C: State Transition Graph and At-

tractors. Each dot represents a state, and two attractors were extracted (highlighted in blue 

and green with a loop). The Attractor 1 has 5 group members’ self-disclosure as ON and At-

tractor 2 has 3 group members’ self-disclosure as ON. Panel D: Network Management Strat-

egies. A strategy is found for this group by turning the sixth node OFF (the sixth variable in 

the attractor state), the network can be moved from Attractor 2 to Attractor 1. 
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3.2 Between-Group Differences: Different 
Management Strategies 

The above analysis was done for each of the 18 

groups. Results are summarized in Table 3 (in-

ferred Boolean functions, state transition 

graph, attractors, and control strategy) and Fig-

ure 3 (state transition graphs). As seen in the 

Boolean function expressions column of Table 

3, each group had its own unique dynamics. All 

the Boolean networks were different. Thus, the 

state transition graphs derived from each Bool-

ean network are unique. As seen in Figure 3, 

each group had a unique set of attractors, and 

as seen in Table 3, each group had a unique 

control strategy. 

We did not find guidelines for a cutoff of ac-

ceptable error from the literature introducing 

inference of Boolean functions (Akutsu et al., 

2000), so we report the empirical distribution of 

error in our sample. The error of inference of 

Boolean function for individual group 

member’s self-disclosure is on average 1.6 (SD = 

1.1). Because each group might have a different 

number of observations, we use the error rate, 

defined as error/# of observations. Error rate of 

the Boolean functions for individual group 

member’s self-disclosure is on average 0.2 (SD 

= 0.09). 

3.2.1 Assimilative and Repulsive Social Influ-
ences 

Of the 18 groups, 16 included both assimilative 

and repulsive social influences. Specifically, 

each of these groups’ Boolean functions in-

cluded a function with the form of xj(t + 1) = xi(t) 

which indicates assimilative social influence 

where xj moves toward xi; and a function with 

the form of xj(t + 1) = xi(t) which indicates that 

repulsive social influence with xj is moving away 

from xi. The co-existence of these Boolean func-

tions in the same network indicates that social 

influence in therapy groups is not always assim-

ilative. In all these groups it appears that some 

group members dominate the group  

Figure 3 
Illustration of eighteen state-transition graphs. 
 

Note. In each panel, each color indicates a different attractor and its basin, and the self-loop 

indicates an attractor and dashed arrows indicate direction of state transition, e.g., Panel G 

shows a state transition graph with one fixed point attractor, with a self-loop, Panel N shows a 

state transition graph with one limit cycle attractor where the system cycles through two 

states, Panel P shows a state transition graph with four limit cycle attractors labeled with dif-

ferent colors. 
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Table 3 

Each group’s model result, including Boolean functions, state transition graph, attractors, and con-
trol strategy (totally 18 groups) 

 



Group Boolean Network Yang et al., 2024 

17 advances.in/psychology 

 

 

Table 3 (continued) 
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Table 3 (continued) 
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discussion time and prevent other group 

members from participating. The other 2 

groups had only repulsive social influence dy-

namics (Groups 14 and 15). Additionally, when a 

Boolean function is fixed at 0, e.g., x1(t + 1) = 0 

that indicates the behavior of the ith group 

member is always OFF, meaning that they 

never self-disclosed in the group. Such mem-

bers could be conceptualized as not affected 

by social influence (neither assimilative or re-

pulsive). Similarly, When a Boolean function is 

fixed at 1, e.g., xi(t + 1) = 1 that indicates the be-

havior of the ith group member is always ON, 

meaning that they are committed to self-dis-

close every week. Such members could be con-

ceptualized as also not affected by social influ-

ence. 

3.2.2 Attractor States 

The state transition graphs in Figure 3 show 

that 8 groups have only one attractor (state 

transition graph has a single color – blue, e.g., 

Figure 3g), and 10 groups have two or more at-

tractors (state transition graph has multiple 

colors, e.g., Figure 3a). The state transition 

graph is obtained in the same way as intro-

duced in the “Extraction of Attractors” section, 

and it is depicted using dots to represent states 

in Figure 3, instead of circles with states in Fig-

ure 1c, due to the lack of space. Attractors in the 

state transition graph are indicated by self-

loops. It is worth noting that when a group has 

a member whose behavior is fixed at 0 or 1, the 

number of states in the state transition graph 

will reduce by half. This reduction is because 

only half of the initial states need to be consid-

ered in the extraction of attractor step, with 

one node fixed at either 0 or 1. Thus, some state 

transition graphs have fewer states, for in-

stance, Figure 3o only have two states, and the 

corresponding Group 15 has 4 nodes being 

fixed at 1, and only one node x4 is free to change 

its state. It is also worth noting some attractors 

are complex attractors (or limit cycle), indicat-

ing the system cycles through a set of states, 

for instance, Figure 3j (or Group 10) shows an 

attractor with 4 states, which the system cycles 

through week by week. 

3.2.3 Desirability and Number of Attractors 

Based on our definition of desirability, attrac-

tors where the majority of group members’ self-

disclosure is ON are considered desirable; oth-

erwise, they are considered undesirable. 

3.2.4 Control Strategies 

Examination of the structure of groups’ attrac-

tor basins and control strategies led us to de-

velop a typology of groups. Specifically, we 

identified three types of groups. These are de-

scribed in Table 4. The first type is the manage-

able group. These groups (N = 6) had multiple 

attractors that had differential desirability, and 

a single-node perturbation control strategy 

was available to move the system into a more 

desirable attractor. The second type is the un-

manageable groups. These groups (N = 2) had 

one or four attractors. In any attractor, the 

group cannot reach the majority of the group 

members’ self-disclosure being ON, so no sin-

gle-node perturbation control strategy is avail-

able because there is no alternative desirable 

attractor to direct the system to. The third type 

is the well-functioning group. These groups (N 

= 10) had one, two, or four attractors, and each 

attractor was desirable where the majority of 

the group members’ self-disclosure = ON. Thus, 

these groups were already functioning well and 

no control strategy was needed. 

3.2.5 Exploring Alternative Boolean  
Functions 

As previously mentioned, we only introduce 

one set of possible Boolean functions in the Re-

sults section for the purpose of brevity. To pro-

vide a more complete picture of the empirical 

example, we examine thoroughly the alterna-

tive Boolean functions and their impact on con-

trol strategy. We examined all the possible 

Boolean functions in a combinatory fashion 

and ran the analytical steps, including extrac-

tion of attractors and design of network control, 

for each possible combination of the Boolean 

functions. 
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Table 4 

Three scenarios of attractors and network con-
trol strategies (18 groups in total) 

Index Type Attractors and Network 
Control Strategy Count 

(Groups) 

1 Manageable 

groups 

Has multiple attractors 
with at least one desira-
ble attractor, and has at 
least one control strategy 
avail- able (6) 

2 Unmanagea-
ble groups 

Has one or multiple at-
tractors, but none is desir-
able, so no control strat-
egy is available (2) 

3 Well-function-
ing groups 

Has one or multiple at-
tractors, which are all 
desirable, hence no con-
trol strategy is needed (10) 

 

We also categorized the control strategies us-

ing the same principle introduced in the previ-

ous section “Control Strategies”. We find some 

groups can be categorized as one particular 

type, and some groups can be considered as 

having multiple types in a probabilistic manner 

(for details see Table 5). For Group 1, after we ex-

plored all 27 possible Boolean function combi-

nations, we found all of them are manageable. 

For Group 3, after we explore all 9 possible com-

binations of Boolean functions, we find that 

three combinations are manageable (33%), one 

combination is not manageable (11%), and 5 

combinations are well-functioning (56%). This 

could be interpreted as Group 3 being man-

ageable with a probability of 33%, unmanagea-

ble with a probability of 11%, and well-function-

ing with a probability of 56%. 

4. DISCUSSION 

In this paper, we have introduced the Boolean 

network as a method to model and manage 

group processes. The Boolean network 

method provides a realistic solution for both 

modeling and managing group processes for 

two reasons. First, the Boolean network 

method can model both assimilative and repul-

sive social influence and does not impose a spe-

cific kind of social influence. Second, the Bool-

ean network method can provide group man-

agement strategies, even for social networks 

with both assimilative and repulsive social influ-

ence. 

The utility of the Boolean network method is 

demonstrated through application of this 

method to empirical data about when individ-

uals self-disclose in therapy groups (4 to 8 par-

ticipants) over 10 to 16 consecutive weeks. In the 

model results, we found instances where both 

assimilative and repulsive social influence man-

ifest simultaneously in the same group, and 

that it is often possible to design network con-

trol strategies that would ensure that the ma-

jority of group members engage in the desired 

behavior. The detailed introduction of the Bool-

ean network method with the accompanied tu-

torial and the empirical application together 

contribute to our knowledge and analytical 

repertoire about how to model and manage 

group processes realistically. 

4.1 Assimilative and Repulsive Social Influ-
ence 

The Boolean network method allows for esti-

mation of assimilative and repulsive social influ-

ence, because it allows simultaneous existence 

of both positive and negative ties between 

group members (Harrigan et al., 2020). Con-

firming our expectation that assimilative and 

repulsive social influence can co-exist, we in-

deed found empirical evidence of both assimi-

lative and repulsive social influence within 

groups. As such, the empirical results demon-

strate the Boolean network method can model 

group processes in a flexible and realistic way.  

Uncovering repulsive social influence can facili-

tate a therapist’s understanding of the group 

process. If only assimilative social influence is 

assumed and modeled, then even though 

there is repulsive social influence in the group, 

it remains undiscovered. As introduced earlier, 

the underlying mechanisms of repulsive social
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Table 5 

Proportions of network control strategies per group among all possible Boolean function combina-
tions (totally 18 groups) 

 

Index Manageable 

Count (Percentage) 

Unmanageable 

Count (Percentage) 

Well-Functioning 

Count (Percentage) 

1 27 (100%) 0 (0%) 0 (0%) 

2 6 (100%) 0 (0%) 0 (0%) 

3 3 (33%) 1 (11%) 5 (56%) 

4 6 (100%) 0 (0%) 0 (0%) 

5 8 (67%) 4 (33%) 0 (0%) 

6 20 (63%) 0 (0%) 12 (38%) 

7 0 (0%) 2 (100%) 0 (0%) 

8 0 (0%) 2 (100%) 0 (0%) 

9 0 (0%) 0 (0%) 12 (100%) 

10 6 (50%) 0 (0%) 6 (50%) 

11 1 (50%) 0 (0%) 1 (50%) 

12 1 (2%) 0 (0%) 47 (98%) 

13 0 (0%) 0 (0%) 16 (100%) 

14 3 (19%) 0 (0%) 13 (81%) 

15 0 (0%) 0 (0%) 2 (100%) 

16 2 (33%) 2 (33%) 2 (33%) 

17 74 (15%) 6 (1%) 420 (84%) 

18 0 (0%) 0 (0%) 4 (100%) 
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influence could be due to negative ties (Harri-

gan et al., 2020; Veenstra et al., 2013), social 

learning of negative consequences of self-dis-

closure (Bandura, 1977), or dominance (Martin, 

2009; Sade & Dow, 2013). Identification of the 

dyad that has repulsive social influence can, 

therefore signal to a therapist that one or more 

of these underlying mechanisms might exist in 

the group and allow intervention to target the 

repulsive social influence that the therapist 

considers harmful for the group process. For 

example, if the therapist considers the repul-

sive social influence from Member A to Mem-

ber B is caused by dominance, the therapist 

could intervene by shortening the self-disclo-

sure of Member A and encouraging Member B 

to take the opportunity to self-disclose. 

Generally, we have considered the NOT opera-

tor as an indicator of repulsive social influence 

and used dominance, social learning, or nega-

tive ties to provide a potential explanation of 

why such a group process would occur. An al-

ternative interpretation, however, is that the 

NOT operator implies turn-taking behavior. For 

example, if group member 1’s behavior at time 

t + 1 is predicted to be NOT group member 2’s 

behavior at time t, then that means when 

group member 2 speaks at time t, then group 

member 1 will not self-disclose at time t + 1, 

which could be interpreted as group member 

1 wants to give group member 2 the oppor-

tunity to continue self-disclosure. 

4.2 Network Control to Manage Group Pro-
cesses 

The Boolean network control method does not 

assume social influence is only assimilative and 

the network control design does not rely on 

manipulating social ties like previous network-

based interventions. We demonstrated how 

the Boolean network methods allow for the 

identification and design of group manage-

ment strategies for groups with both assimila-

tive and repulsive social influence. The dynam-

ical system modeling framework enables the 

extraction of attractors by deriving state 

transitions from t to t + 1 and identifying the 

state(s) the system moved toward and is ab-

sorbed in. As a result, the control system design 

is based on the extracted attractors and their 

differential desirability and the control design 

provides group management strategies, which 

focus on changing a few group member’s be-

havior. The network control design shows that 

even if the network is fully connected, like the 

therapy groups in our empirical example, the 

control method can still find strategies to influ-

ence the majority of the group self-disclose. 

The network control method makes an as-

sumption that the group dynamics do not 

change so that network control strategies 

(group management strategies) can be effec-

tive. If the group dynamics change, which 

means the Boolean functions that are used to 

describe social influence also change, then the 

attractors and their desirability might change, 

and subsequently, the control strategies might 

change. 

This network control method can help group 

therapists manage group processes. In coun-

seling practice, therapists can use the network 

control strategy to guide group therapy prac-

tice and to encourage specific group members 

to self-disclose when the group is stuck with 

only a few members self-disclosing, which is an 

undesirable attractor, and then the group can 

be moved out of the undesirable attractor and 

have more members self-disclose. By manag-

ing the group and allowing more group mem-

bers to self-disclosure, the therapy group is ex-

pected to have more effective counseling, as 

self-disclosure can strengthen the therapeutic 

process and the self-evaluation in self-disclo-

sure can enhance healing and change (Farber, 

2006). An alternative way to use the network 

control is that the therapist could develop a hy-

pothesis about group management strategies 

(e.g., encouraging specific group members to 

self-disclose) and use the Boolean network 

method to confirm their hypothesis. 

The application of the Boolean network 
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method is not limited to only therapy groups, 

nor to this particular behavior (e.g., self-disclo-

sure). The Boolean network method can be ap-

plied to a wide range of group processes that 

rely on social influence. Take the prevention of 

substance use among adolescents as an exam-

ple, the Boolean network control method can 

provide suggestions for schoolteachers or 

community stakeholders. In an adolescent so-

cial network within a school/community, the 

Boolean network control method could be 

used to identify strategies for reducing the 

number of adolescents that adopt substance 

use as a regular behavior, which corresponds to 

adolescents’ substance use being ON in an at-

tractor state. The strategies will require modify-

ing a few adolescents’ substance use behavior 

so that the whole social network will be moved 

to an attractor with fewer adolescents engag-

ing in substance use. 

4.3 Limitations and Outlooks 

4.3.1 Controllability 

The desirability of an attractor, in this paper, 

was defined as whether the majority of group 

members’ self-disclosure is ON. Hence, the pre-

requisite of a group having a control strategy is 

the group must have multiple attractors with 

at least one desirable attractor. We found in our 

empirical dataset that not all groups have mul-

tiple attractors, nor do they always have at least 

one desirable attractor. This indicates that 

some groups are not controllable with the cur-

rent control system design method. Further 

methods to assess the controllability of a Bool-

ean network can provide a quick evaluation of 

whether a network is controllable (Cheng & Qi, 

2009). Furthermore, the ideal attractor might 

be having all group members self-disclose pe-

riodically in the group therapy context, but this 

kind of attractor may not exist in the naturally 

occurring attractor(s). It may be possible to de-

rive a management strategy to create an at-

tractor with all group members’ self-disclosure 

ON with more complex perturbation strategy 

than a single-node perturbation (Xiao & 

Dougherty, 2007). However, the practical 

implication of a more complex group manage-

ment strategy is that it may increase the bur-

den on the group therapist. Future research, es-

pecially regarding the implementation of 

group management strategies, can further ex-

plore the balance between therapist burden 

and optimal attractor design. 

4.3.2 Efficiency of Attractor Extraction for 
Larger Networks 

We presented the Boolean network method 

and an empirical application on modeling and 

controlling for dynamics of social influence. The 

empirical example here had the main goal to 

maximizing the diversity of participation in 

group dialogue. The size of the network in the 

empirical example is relatively small (4 to 8), 

and some social networks are much larger, 

ranging from a classroom or school to online 

social networks. The large size of the network 

will create a challenge for attractor extraction, 

as it requires enumeration of all initial condi-

tions, which is at the scale of 2n, and n is the net-

work size (Liu & Barabasi, 2016). Methods that 

identify specific network structures (e.g., stable 

motif) can efficiently extract attractors that are 

needed and will facilitate controlling the dy-

namics of large networks (Zanudo & Albert, 

2015). 

4.3.3 Complex Social Influence 

In this paper, we preselect the number of input 

variables included in each Boolean function as 

k = 1 for the purpose of not overfitting short time 

series and matching the theory about assimila-

tive and repulsive social influence. When we 

have more observations in the time series, we 

can fit more complex social influence, e.g., k = 2. 

This has the advantage of allowing the model-

ing of complex social influence in a multi-per-

son group setting. For example, if two persons 

team up and dominate a third person, it can be 

modeled using k = 2, and the Boolean function 

will be in the form of x3(t + 1) = x1(t) ∧ x2(t), mean-

ing only when both x1 and x2 are ON – occupying 

resources, x3 will be turned OFF – not occupying 

resources. To understand complex social 
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influence, we also need theories about social 

influence to pinpoint specific forms and mech-

anisms of social influence. 

4.3.4 Binarization of Time-Series 

In our data pre-processing, we chose to bina-

rize the time-series for each individual based 

on the mean as the threshold. This choice was 

made to introduce the Boolean network 

method in a straightforward and succinct 

manner. As noted in previous research on gene 

expressions (Berestovsky & Nakhleh, 2012; 

Hopfensitz et al., 2012), using different methods 

to binarize the time series might lead to discov-

ery of different group dynamics. Future re-

search in social dynamics applications is 

needed to evaluate the robustness of the net-

work estimation based on various binarization 

choices. 

4.3.5 Longer Memory of Group Process 

In this paper, we focused on the temporal rela-

tion from t to t + 1 to model the group process 

(i.e., lag-1 relations). In reality, social systems 

might have longer memory than one time 

step, which was one week in our empirical ex-

ample. Future research might look to incorpo-

rate longer time lags in the Boolean network 

method and evaluate if and how the proper 

number of lags influences the group dynamics. 

4.3.6 Heterogeneity in Group Boolean Net-
works 

Even though the Boolean functions we consid-

ered were relatively simple (e.g., Boolean func-

tions with k = 1 input), We obtained a wide vari-

ety of Boolean networks, as summarized in Ta-

ble 3, and substantial heterogeneity in the 

state-transition graphs, as shown in Figure 3. 

The number of possible states in a state-transi-

tion graph (the dots in the state-transition 

graph) is primarily determined by the size of 

the group. Groups of size N will have 2N possible 

states. Larger groups have larger number of 

possible states compared to smaller groups. 

For example, as seen in 3, group A had 8 mem-

bers, and group C had 4 members, group A has 

more states than that of group C. Even for 

same-sized groups, the Boolean functions de-

scribing the dynamics may differ, and estima-

tion of those functions could be influenced by 

the level of noise in the system and/or data 

preparation choices. In sum, we should expect 

heterogeneity and future research can exam-

ine all the various methodological and substan-

tive phenomena contributing to the observed 

differences in group dynamics. 

4.3.7 Peer Selection 

In this study, we did not consider the process of 

peer selection also because we assumed that 

no peer selection (such as befriending or end-

ing friendships with certain group members) 

occurs that would impact the effect of social in-

fluence on self-disclosure in the therapy group 

setting. For social influence problem that is in-

tertwined with peer selection, more sophisti-

cated model, such as stochastic actor-based 

models (Snijders et al., 2010), are needed to 

properly model group processes. A stochastic 

actor-based model that can model peer selec-

tion as well as peer influence while allowing the 

social influence to be assimilative or repulsive 

would be an ideal model framework. 

4.3.8 Empirical Example 

The participants in this paper were young 

adults, and for privacy reasons, their demo-

graphic information and severity of psycho-

pathology were not included in the analyses. 

Before generalizing to larger populations, it will 

be useful to test this approach with other pop-

ulations, including individuals with various de-

grees of psychopathology, and with both 

younger and older individuals. In terms of vari-

ables, we selected the item about self-disclo-

sure over some of the other weekly measures of 

participant “progress” (e.g., self-efficacy), be-

cause self-disclosure is more easily observed by 

other group members, and thus has the poten-

tial to generate social influence in the process 

of group therapy. A caveat with this measure is 

that the exact survey item was the ease of self-

disclosure, which may differ from whether a 

participant did or did not self-disclosure. For 
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lack of a more precise measure of self-disclo-

sure behavior, we use ease of self-disclosure as 

a proxy of self-disclosure behavior. Another ca-

veat of using self-disclosure to model social in-

fluence is that self-disclosure may be depend-

ent on social desirability (Anchor et al., 1972) 

and can alter or unify self-disclosure behavior 

and consequent attractor states (e.g., high pro-

portion of individuals’ self-disclosure being 

ON/OFF). This implies that groups that have 

more individuals with higher social desirability 

might have a different group dynamic than the 

groups that have fewer individuals with higher 

social desirability. Given the heterogeneity in 

the Boolean networks across different groups, 

it maybe useful to examine the relation be-

tween social desirability and group dynamics. 

The measurement in our dataset of self-disclo-

sure behavior has 10 ∼ 16 weeks/observations, 

and this is often considered a short time series 

for dynamical system models. To avoid overfit-

ting the data, we selected the number of input 

variables k = 1. For more complex social influ-

ence, involving a higher number of input varia-

bles, more repeated measures of behavior data 

would be needed. Longer measurements of 

behavior data would be helpful to improve the 

precision of analysis and identify more complex 

social influences. 

5. CONCLUSION 

In this paper, we introduced the Boolean net-

work method as a method to model and man-

age group processes. To demonstrate the util-

ity of this method, we applied this method on 

an empirical dataset, focusing on managing 

self-disclosure behavior in group therapy set-

tings. Our modeling approach addresses gaps 

in previous network-based intervention litera-

ture through construction of networks that 

simultaneously accommodate both assimila-

tive and repulsive social influence, and that al-

low for design of network control strategies for 

networks in which both types of social influ-

ence dynamics are operating. The Boolean net-

work method is a more flexible, realistic, and 

precise method to design network-based 

intervention. We hope that this first application 

and demonstration of Boolean networks to re-

peated measurement of fully connected 

groups will open up discussions and invite 

more empirical studies of network control sys-

tem design for social networks. 
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